لله سؤال 23 الفقرة المحتجة (d) Test bank chapter (7) Choose the most correct answer 1. The lowest energy state of an atom is referred to as its a) bottom state. b) ground state. c) fundamental state. d) original state. 2. All(s)orbitals are a) shaped like four-leaf clovers. b) dumbbell-shaped. c) spherical. d) triangular. 3. [He]2s²2p² is the electron configuration of which element? a) Beryllium Be 252p2 = 4 as pel 1 b) Boron B c) carbon C d) nitrogen N 4. What are the valence electrons of vanadium (V)? a) 4s² b) 3d³ V23: 15252p6353p6453d', c) 4s²3d³
 d) 3d⁵ 5. What are the valence electrons of gallium Ga? Ga31: 15282pt 3523pt 4533d14pt b) 3d³ c) 4s²4p d) 3d³ 6. The electron configuration of a neutral atom is [Ne] 3s 3p]. The four quantum numbers of the last electron are: $n=3, l=1, ml=-1, ms=+\frac{1}{2}$ a) (2, 1, -1, +1/2) b) (3, 3, -1, +1/2) c) (3, 0, -1, +1/2) d) (3, 1, -1, +1/2) $(3, 1, -1, +\frac{1}{7})$ 7. How many unpaired electrons does chromium (Cr) have? Cr & [Ar] 4523 d4 Less Stable : [Ar] 45 3d More stable [1] [11/11/1] Gunpaired & b) 2 c) 4 8. How many unpaired electrons does selenium (Se) have? Se: [Ar]454p4 b) 2 c) 4 d) 6 11/1/1

9. What is the maximum number of orbitals described by the quantum numbers: $n = 3$ a) 1 b) 3 $ml = 2l + l$ Shape
9. What is the maximum number of ofoliais described by the quantum numbers. $n-3$
a) 1 b) 3 $ml = 2l+1$
c) 5
d) 9 $m_{\ell} = 2(2) + 1 = 6$
10. What is the maximum number of orbitals described by the quantum numbers: $n = 4$ a) 7 $\sqrt{100} = 4$
a) 7
b) 14 N= 42=16
c) 16
d) 48
11. The maximum number of electrons that can occupy an energy level described by the principal quantum number, n , is
a) n+1
b) $2n$ c) $2n^2$
d) n^2
12. A possible set of quantum numbers for the last electron added to complete an atom of sodium va in its ground state is
a) $n=3$, $l=1$, $m_l=0$, $m_s=\frac{1}{2}$ No. 15 ² 25 ² 2 p ⁶ 35) (asté $m=3$
b) $n=3$, $l=0$, $m_l=0$, $m_s=\frac{1}{2}$ c) $n=2$, $l=1$, $m_l=-1$, $m_s=\frac{1}{2}$
c) $n = 2$, $l = 1$, $m_1 = -1$, $m_2 = \frac{1}{2}$ d) $n = 2$, $l = 0$, $m_1 = -1$, $m_2 = \frac{1}{2}$
d) $n-2$, $t-0$, m_1-1 , m_s-7 2
c) $n=2$, $l=1$, $m_l=-1$, $m_s=\frac{1}{2}$ d) $n=2$, $l=0$, $m_l=-1$, $m_s=\frac{1}{2}$ (3) (6) $l=1$) $m_s=1$ 13. The ground-state electron configuration of a calcium atom is
C
a) $[Ne]3s^2$ Q^{20} : $[Ar] 4 S^2$
b) [Ne]3s ² 3p ⁶
c) [Ar]4s ¹ 3d ¹
d) [Arl4s²
-7 []
14. Which one of the following sets of quantum numbers is not possible?
n / m/ m
Row 1 4 3 -2 $+1/2$ $-1/2 \rightarrow -1/2 \rightarrow -1/2$ Row 2 3 0 0 $+1/2$
Row 2 3 $d^2(2) = -1/2 \rightarrow 1/2$
Row 3 3 0 0 +1/2
Row 4 4 1 1 -1/2 Row 5 2 0 0 +1/2
Row 5 2 0 0 +1/2
a) Row 1
b) Row 2
c) Row 3
d) Row 4
d) 1011 4
15. The number of orbitals in a d subshell is
a) 1 b) 3 l=2 c) $l=1$ $l=2$
b) $\frac{3}{5}$ = $\frac{2(2)+(=5)}{(=5)}$
c) 3
d) 7
5 april 112

16. Which g	round-state atom has	an electron conf	iguration described	by the following or	bital diagra
[Ar]	$\frac{\uparrow\downarrow}{4s}$ $\frac{\uparrow\downarrow}{4s}$ $\frac{\uparrow\downarrow}{3c}$	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	$\stackrel{\uparrow\downarrow}{=} \stackrel{\uparrow}{\stackrel{4p}{=}} \stackrel{\uparrow}{=}$		
a) b) c) d)	phosphorus germanium selenium tellurium	ابعة ال 6 سادس	بالدورة الو و المجودة	4524P	1)=6
17. A ground	d-state atom of nickel		_		
a) b) c) d)	0, diamagnetic 6, diamagnetic 3, paramagnetic 2, paramagnetic	N128	[Ar] 452	3 ol 8 Dzumpaired	é

18. What is the frequency (s-1) of electromagnetic radiation that has a wavelength of 0.53 m?

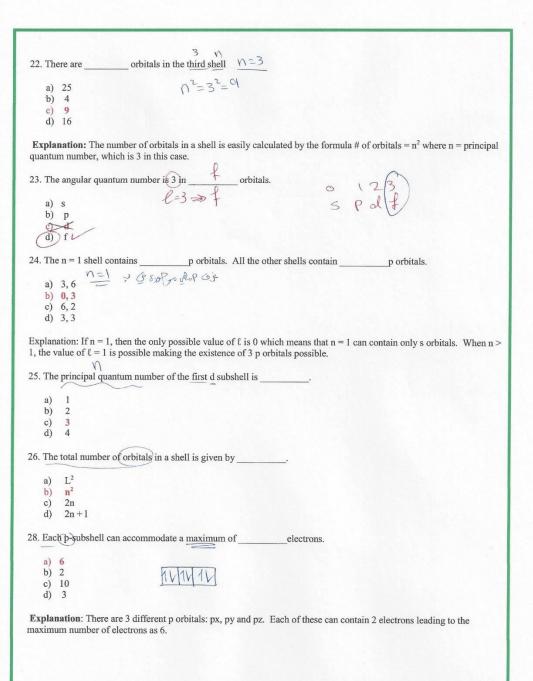
a) 5.7 x 10⁸
$$C = \lambda v$$

b) 1.8 x 10⁹ c : 1.6 x 10⁸ $V = \frac{c}{\lambda} \implies V = \frac{3x[0^8]}{0.53} = 566637735.8$ (3) 5.7 $\times 16^8$

Explanation: The frequency and wavelength of electromagnetic radiation are related by the equation $c = \lambda v$, where c is the speed of light (=3.00 x 108 m/s), λ is the wavelength in m and v is the frequency is s^{-1} or Hz. The frequency can be calculated by rearranging the above formula to get $v=c/\lambda=3\times10^8/0.53=5.7\times10^8 s^{-1}$

19. The energy of a photon of light is ____ proportional to its frequency and ____ proportional to its wavelength.

a) directly, directly
b) inversely, inversely
c) inversely, directly
d) directly, inversely

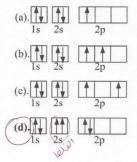

() inversely, directly
() inversely
() inv

20. The wavelength of a photon of energy $5.25 \times 10^{-19} \, \mathrm{J}$ is ______ m.

a)
$$2.64 \times 10^6$$
 $E = h \frac{C}{\lambda}$ $\lambda = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{5.29 \times 10^{-19}}$ $\lambda = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{5.29 \times 10^{-19}}$ $\lambda = 3.79 \times 10^{-7}$

Explanation: The wavelength and energy are related by the formula $E=hc/\lambda$, where h (6.626 x 10^{-34} Js) is Planck's constant, c is the speed of light (3.00 x 10^8 m/s) and λ is the wavelength in meters. The wavelength can then be calculated by rearranging the above formula as follows: $\lambda = hc/E = 6.63 \times 10^{-34} \times 3 \times 10^8 / 5.25 \times 10^{-19} = 3.79 \text{ x } 10^{-7} \text{ m}$

21. What is the frequency (s ⁻¹) of a photon of energy 4.38×10^{-18} J?
a) 438 b) 1.45 x 10 ⁻¹⁶ c) 6.61 x 10 ¹⁵ d) 2.30 x 10 ⁷ $V = \frac{4.38 \times 10^{-18}}{6.63 \times 10^{-34}} = 6.61 \times 10^{15} \text{ Hz}$
Explanation: The frequency v of this photon can be calculated by rearranging the equation $E = h v$ where E is the energy $h = Planck$'s constant and $v = frequency$ in s^{-1} . $v = E/h = 4.38 \times 10^{-18}/6.63 \times 10^{-34} = 6.61 \times 10^{15}$
22. An electron is a Bohr hydrogen atom has energy of -1.362 x 10 ⁻¹⁹ J. The value of n for this electron is
a) $\frac{1}{n} \left(\frac{n^2}{n^2} \right) \left[\frac{n^2}{n^2} \right] \left(\frac{n^2}{n^2} \right) \left(\frac{n^2}{n^2} \right)$
Explanation: The energy of an electron in a particular energy state in the hydrogen atom can be calculated by using the formula $E = (-2.18 \times 10^{-18} \text{ J})/n^2$, where n is the principal quantum number for the energy state. The value of n can be found by rearranging the above formula as follows: $n = \sqrt{\frac{-2.18 \times 10^{-18} \text{ J}}{-1.362 \times 10^{-19}}} = 4$
19. The $n = 2$ to $n = 6$ transition in the Bohr hydrogen atom corresponds to the of a photon with a wavelength of nm
a) emission, 411 b) absorption, 411 c) absorption, 657 d) emission, 389 $= 2.18 \times 10^{-18} (0.22) = 4.84 \times 10^{-19} J$ $= 2.18 \times 10^{-18} (0.22) = 4.84 \times 10^{-19} J$ $= 4.18 \times 10^{-7} \times 10^{-7} \times 10^{-9} = 4.11 \text{ nm} \text{ nm} J_{33}$
Explanation: There are 2 parts to this question. Since the electron is moving from a smaller value of n (ni) to a larger value of n (nr), it must be absorbing energy. The wavelength responsible for this transition can be calculated by using the formula: $E = R_H \left(1/n_1^2 - 1/n_1^2 \right)$ & $E = hc/\lambda$
20. How many quantum numbers are necessary to designate a particular electron in an atom?
a) 3 b) 4 → どうでめ c) 2 d) 1 かし, かし, かち
21. The quantum number defines the shape of an orbital.
a) spin b) magnetic c) principal d) angular $\rightarrow \mathcal{L}_{\mathcal{P}}$



29. Each p-subshell can accommodate a maximum ofelectrons.
a) 6
b) 2 c) 10
d) 3
4, 3
Explanation: There are 3 different p orbitals: p_x , p_y and p_z . Each of these can contain 2 electrons leading to the maximum number of electrons as 6.
30. The 3p subshell in the ground state of atomic xenon contains electrons.
to die die die
a) 2
b) 6
a) 2 b) 6 c) 36 d) 10 Xe: 15 25 2 p6 35 3 p9 45 3 d 10 4 p6 55 2 4 pd 16 5 p6
d) 10
Explanation: Since Xe is a noble gas, its subshells will be completely filled regardless of their principal quantum number. Thus the 3p subshell will contain 6 electrons.
31. $[Ar]4\hat{s}^23d^{10}4\hat{p}^3$ is the electron configuration of a(n) atom.
ا لدورة الرابعة As
b) V c) P 5=2+3 : = = = = = = = = = = = = = = = = = =
d) Sb
Explanation: The easiest way to answer this question is to count the total number of electrons and find which element that number corresponds to. The total number of electrons is $= 18$ (for the Ar) $+ 2 + 10 + 3 = 33$ which corresponds to As.
32. The principal quantum number for the outermost electrons in a Br atom in the ground state is
a) 2
b) 3 BC : LACIUS (4P2
a) 2 b) 3 c) 4
d) 5
Explanation: The electronic configuration of bromine is $[Ar]3d^{10}4s^24p^5$ shows that the outermost electrons are in the s and p orbitals in the 4th energy level making the principal quantum number = 4.
33. All of the have a valence shell electron configuration ns ¹ .
a) noble gases
b) halogens
c) chalcogens
d) alkali metals

)

34. Which one of the following is correct?
a) $v + \lambda = c$ $\lambda y \cap c$
a) $v + \lambda = c$ b) $v/\lambda = c$ $= \lambda \times V$
c) $\lambda = cv$
(d) $v\lambda = c$
35. In the Bohr model of the atom,
a) electrons travel in circular paths called orbitals
b) electrons can have any energy
c) electron energies are quantized
d) electron paths are controlled by probability
d) electron paths are controlled by probability 36. Which one of the following is not a valid value for the magnetic quantum number of an electron in a 5d subshell?
a) 2
b) 3 c) 0
c) 0 $-2-1 + 1 + 2$
u) 1
Explanation: For an electron in the 5d subshell the value of $\ell=2$ and the magnetic quantum number $m\ell$ can have values from $-1,\dots 0,\dots +1$, meaning $m\ell$ could not have a value $= 3$.
37. Which of the subshells below do not exist due to the constraints upon the angular quantum number?
a) 2s \ \(\gamma = 2 \)
b) 2d jep (co 0 2) S
a) $2s$ b) $2d$ c) $2p$ $y \rightarrow y \rightarrow$
d) none of the above
Explanation: The values of the azimuthal quantum number "1" are decided by the values of the principal quantum number "n". The values of 1 will only be from $0n-1$. Thus for $n=2$, only the values of 0 and 1 will be possible for ℓ , which means that only the 2s and 2p orbitals will be possible.
38. An electron cannot have the quantum numbers $n = $, $1 = $, $m\ell = $
a) 2,0,0 y -1
a) 2,0,0
e) 3, 1, -1
(d) 1,1,1 Jep [ml]
Explanation: The values of $[1, 1, 1]$ would be impossible since if $n = 1$, the only value of ℓ would be $= 0$.
39. Which quantum number determines the energy of an electron in a hydrogen atom?
a) n
b) n and ℓ
c) ml
d) l

39. Which electron configuration represents a violation of the Pauli exclusion principle?

Explanation: According to the Pauli Exclusion Principle no two electrons in an atom cannot have the same 4 quantum numbers. The2 electrons in the 2s orbital have the same value for their ms which is not allowed (d)

40. Which of the following is a valid set of four quantum numbers? (n, l, ml, ms)

a) 2,0,0,+½ \(\nu\)
b) 2,(2,1),-½ \(\ne\)
c) 1,0(1)+½ \(\ne\)
d) 2,1,+½\(\ne\)

Explanation: Here is why only option (a) is the correct answer: In option (b), $\ell = 2$ which is not allowed, in (c) $m\ell \neq 1$ since l = 0 and in (d) $m\ell > 1$ which are all not allowed.

41. Which of the following is not a valid set of four quantum numbers? (n, l, ml, ms)

a) 2, 0, 0, + 1/2

b) 2, 1, 0, -1/2 × d) 1, 1, 0, +1/2 × d) 1, 0, 0, +1/2 ×

11-1) jepos = e ula

Explanation: Since n can never be equal to (), option c is the only set that is not valid.