
Al Sham Private University 

Faculty of Informatics Engineering  

 جامعة الشام الخاصة

 كلية الهندسة المعلوماتية

 نظم معلومات موزعة
Distributed Information Systems 

 

Lecture 5: Remote method invocation (RMI) 

هسامغاندي . أ: اعداد  



Introduction 

• Remote method invocation (RMI) is closely related to RPC but 
extended into the world of distributed objects. 

• In RMI, a calling object can invoke a method in a potentially remote 
object and constructed on top of request-reply protocols. 

• The programmer is able to use the full expressive power of object-
oriented programming in the development of distributed systems 
software. 

• all objects in an RMI-based system have unique object references 
(whether they are local or remote), such object references can also be 
passed as parameters, thus offering significantly richer parameter-
passing semantics than in RPC. 

 

 

 

 

 

 

 

 

By Eng. Ghandy Hessam 2 



• RMI allows the programmer to pass parameters not only by value, as 
input or output parameters, but also by object reference. 

• Passing references is particularly attractive if the underlying 
parameter is large or complex. 

• The remote end, on receiving an object reference, can then access 
this object using remote method invocation, instead of having to 
transmit the object value across the network. 

 

 

 

 

 

 

By Eng. Ghandy Hessam 3 



Design issues for RMI 

By Eng. Ghandy Hessam 4 



The object model 

• Object references: Objects can be accessed via object references. For 
example, in Java, a variable that appears to hold an object actually holds a 
reference to that object. 

• Interfaces: An interface provides a definition of the signatures of a set of 
methods (that is, the types of their arguments, return values and 
exceptions) without specifying their implementation. 

• Actions : Action in an object-oriented program is initiated by an object 
invoking a method in another object. An invocation can include additional 
information (arguments) needed to carry out the method. 

• Exceptions: Programs can encounter many sorts of errors and unexpected 
conditions of varying seriousness. 

• Garbage collection: It is necessary to provide a means of freeing the space 
occupied by objects when they are no longer needed. 

 

 

 

 

 

By Eng. Ghandy Hessam 5 



Distributed objects 

• Distributed object systems may adopt the client-server architecture. 
In this case, objects are managed by servers and their clients invoke 
their methods using remote method invocation. 

• In RMI, the client’s request to invoke a method of an object is sent in 
a message to the server managing the object. The invocation is 
carried out by executing a method of the object at the server and the 
result is returned to the client in another message. 

• Distributed objects can assume other architectural models. For 
example, objects can be replicated in order to obtain the usual 
benefits of fault tolerance and enhanced performance, and objects 
can be migrated with a view to enhancing their performance and 
availability. 

 

 

 

 

 

 

By Eng. Ghandy Hessam 6 



The distributed object model 

• Each process contains a collection of objects, some of which can receive 
both local and remote invocations, whereas the other objects can receive 
only local invocations 

• We refer to objects that can receive remote invocations as remote 
objects. 

• the objects B and F are remote objects. 

 

 

 

 

 

 
By Eng. Ghandy Hessam 7 



• Remote object references: Other objects can invoke the methods of a 
remote object if they have access to its remote object reference. For 
example, a remote object reference for B must be available to A. 

• Remote interfaces: Every remote object has a remote interface that 
specifies which of its methods can be invoked remotely. For example, 
the objects B and F must have remote interfaces. 

 

 

 

 

 

 

 

By Eng. Ghandy Hessam 8 



Case study: Java RMI 

 

 

 

 

 

 

 

 

 

By Eng. Ghandy Hessam 9 



How to? 

• It allows objects to invoke methods on remote objects using the same 
syntax as for local invocations. 

• an object making a remote invocation is aware that its target is 
remote because it must handle RemoteExceptions. 

• implementor of a remote object is aware that it is remote because it 
must implement the Remote interface. 

• Remote interfaces are defined by extending an interface called 
Remote provided in the java.rmi package. 

 

 

 
By Eng. Ghandy Hessam 10 



• This interface has to be shared between server and client.  

• Remote interfaces are defined by extending an interface called Remote provided 
in the java.rmi package. 

• The methods must throw RemoteException, but application-specific exceptions 
may also be thrown. 

By Eng. Ghandy Hessam 11 

Java Remote interfaces 



The server 

• The server program is a simplified version of a whiteboard server that 
implements the interface Square_Shape. 

• This implementation called servant. 

• In our example the servant called Square_imp. Using 
UnicastRemoteObject ensures that the resultant object lives only as 
long as the process in which it is created (an alternative is to make 
this an 

• Activatable object that is, one that lives beyond the server instance). 

• The server program consists of a main method and a servant class to 
implement each of its remote interfaces. 

 

 

 

 

 

By Eng. Ghandy Hessam 12 



By Eng. Ghandy Hessam 13 

Servant class to implement the remote interface 



By Eng. Ghandy Hessam 14 

The main method of the server class 



The client 

• It is necessary to run an instance of the Registry in the networked 
environment and then use the class LocateRegistry, which is in 
java.rmi.registry, to discover this registry. 

• More specifically, this class contains a getRegistry method that 
returns an object of type Registry representing the remote binding 
service. 

• Any client program needs to get started by using a binder to look up a 
remote object reference using the lookup operation of the 
RMIregistry. 

 

 

 

 

 

 

 

 

 

By Eng. Ghandy Hessam 15 



By Eng. Ghandy Hessam 16 

The main method of the client class 



End of Lecture 5 

By Eng. Ghandy Hessam 17 


