

Ques. no.	Question								
	Ch	apter 1:- Unit	s and I	Dime	ensions				
	The	e dimensional for	rm of th	ne fo	rce is:				
1	Α	ML^2T^{-2}		B	MLT ⁻²		C	MLT ⁻¹	
	The	e unit of the grav	itationa	ıl for	ce is:				
2	Α	kg.m ² s ⁻²		B	kg.m ² s ⁻³		C	kg. m s ⁻²	
	Ace	cording to dimer	sional	anal	ysis techni	que, the expr	ressio	on $(T = \sqrt{\frac{l}{g}})$ is correct	
	(g	is the gravity, T	is time	and	l is length)	:	1	5	
3	Α	YES		B	No		C		
	Ac	cording to dime	ensional	l ana	alysis tech	nique, the ex	xpres	ssion $(F = \frac{mv^2}{t})$ is	
	cor	rect (Where F is	s the for	rce;	m is the m	ass; v is the	velo	city and t is the time):	
4	Α	YES		B	NO		C		
	Cho the	Choose the correct units from column B corresponding to the right quantity in the column A							
					A B				
			a. Pov	ver	ver $1. \text{ kg/m}^3$				
			b. Dei	nsity 2. Kg m/s^2					
			c. Mo	men	nentum 3. Kg m^2/s^2				
			d. Wo	rk	4. kg m/s				
			e. For	ce		5. Kg m^2/s^3			
5	Α			B			C		
	The	e dimensional for	rm of P	ressi	ure is:				
6	Α	kg $/m.s^2$		B	M/LT ²		C	M.L/s ²	
	The	e dimensional for	rm of d	ensit	y is:			2	
7	Α	ML^3		B	ML		C	ML ⁻³	
	The	e unit of weight	is:	1			1		
8	Α	kg		B	Newton		C	Joule	
	In S	SI units, Joule is	equival	lent t	:		1	2	
9	Α	N/m		B	N. m		C	N/m ²	
	Wh	ich of the follow	ving exp	oress	ions is cor	rect?	1	Momentum has suit (lass ())	
10	Α	Force has unit (kg m dimension (MLT ⁻¹).	√s ⁻) and	B	work has and dimension	unit (kg m ² /s ³) on ($ML^{2}T^{-3}$).	C	and dimension (MLT ⁻¹)	

د. أحمد محمد فتحي منسق الشعبة وأستاذ المقرر

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الفيزياء العامة لطلاب كلية العلوم (101فيز-4)

Ques. no.	Question								
	Wh	nich of the following expres	ssior	ns is correct?					
11	A	Volume has unit (m^3) and dimension (L^4)	B	Force has unit (kg m/s) and dimension (MLT ⁻¹)	С	Pressure has unit kg/ms ² and dimension $ML^{-1}T^{-2}$			
	Wh	nich of the following expres	ssior	ns is correct?					
12	A	Acceleration has unit m^2/s^2 and dimension $L^{-1}T^2$	B	Work has unit (kg m^2/s^2) and dimension (ML^2T^2)	С	Density has unit kg/m ³ and dimension ML ⁻³			
	Wh	Which of the following expressions is correct?							
13	A	Velocity has unit (m/s) and dimension (M/L^{-1})	B	Force has unit (kg m/s^2) and dimension (MLT ⁻²)	С	Pressure has unit kg/ms ³ and dimension ML ⁻¹ T ⁻³			
	In SI units, Newton is equivalent to:								
14	Α	Kg .m/s	B	kg.m/s ²	С	$kg.m^2/s^2$			
	The SI unit of pressure is Pascal and is equivalent to:								
15	A	Kg m s ²	B	$kg m^{-1} s^{-2}$	С	kg m ⁻¹ s ²			
	The	e SI unit of pressure is the l	Pasc	al and is defined as:					
16	Α	N/m ²	B	N/m ³	С	N^2/m^2			
	The	e Joule is equivalent to in S	SI un	its:					
17	Α	N/m	B	N. m	С	N/m ²			
	De	velop the precise form of	f the	e following expression: at	t =	k v ⁿ x ^m where, a is			
10	acc	eleration, t is time, x is a	dista	ince and v is velocity.	C	n-1 m = 0			
18	A	n=1, m= -1	В	n=2, m= -1	C	II-1, III-0			
	Is 1 acc	the expression $v = at d$ eleration and t is time	ımer	isionally correct or not, v	wher	e v is velocity, a is			
19	A	Correct	B	Incorrect	С				
	Usi	ng the dimensional analy	sis,	check the validity of the	equ	ation: $x^2 = (1/2)$ at ² ,			
	wh	ere, x is the distance, a is th	ne ac	cceleration and t is the time					
20	A	Correct	B	Incorrect	C				

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

بنك الأسئلة في مقرر الفيزياء العامة لطلاب كلية العلوم (101فيز-4)

Ques. no.	Question							
		Cha	pter	1, Units and dimensions	5			
	Tes and	t the validity of the expres g is the acceleration due t	sion o gra	$t = 2\pi \sqrt{\frac{\ell}{g}}$, where, t	is th	e time, ℓ is the length		
21	Α	Correct	B	Incorrect	C			
	If $v = a^n x^{m-3}$, where x is displacement, a is acceleration, t is time and n and m are							
22	exp	(n-1) $(m-2)$	es oi R	$\binom{1}{(n-0.5)}$ (m-3.5)	iona	(n=2), $(m=1)$		
22	A Th	a unit of the Desister	D	(ii= 0.5), (iii= 5.5)	U			
23	A III	Ω	B	$\frac{1}{0}$ O/m	C	Q-1		
24	Th	e unit of the area is:	D		U			
21	A	m^2	В	m/s	C	L^2		
25	The dimension of the volume is:							
23	A	L^3	В	L-3	C	m ³		
26	The basic physical quantities are:							
20	•	Length, area and	П	Length, mass and	C	Mass, time and		
	A	time	В	time		volume		
27	Is	the expression $v = a$	X (dimensionally correct	ct o	r not, where v is		
	ve	locity, a is accelerat	ion	and x is distance.				
	Α	Correct	В	Incorrect	C			
			Cha	apter 2:- Vectors:				
	If, i	n Cartesian coordinate x =	11cr	m and y =15cm, what is θ	in po	olar coordinate?		
28	Α	53.7°	B	63.1°	C	66.5°		
	Wh	ich of the following is a ve	ector	quantity?				
29	Α	Mass	B	Force	C	Volume		
	If a	body's initial position at ti	ime t	$\vec{r_1} = 3\hat{i} + 5\hat{j}$ and it	s pos	sition at a later time t_2		
	is <i>r</i>	$\vec{t}_2 = 6\vec{i} + 9\vec{j}$, its displacement	ent b	between t_1 and t_2 is:				
30	A	$3\hat{i}+5\hat{j}$	B	$3\hat{i} + 4\hat{j}$	C	$-3\hat{i}+4\hat{j}$		

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

	The polar coordinate of (r, θ) of a Cartesian coordinate (-3.5, -2.5) is:							
31	A	(4.3, 216°)	B	(10, 100°)	C	(120, 17°)		
	Wh	at are the Cartesian coordi	nates	s of the point $(r, \theta) = (3, 60)$)°)?			
32	A	(1.8, 2.1)	B	. (1.5, 2.6)	C	(1.5, 3.6)		
33	Α	(2.3, 3.2)	B	(3.0, 2.0)	C	(4.6, 6.9)		
	If a	vector has an x-compone	nt of	f 9 and a y-component of	12, v	vhat is the magnitude		
	of t	his vector?				17		
34	Α	19	B	15	C	17		
	If a vector has an x-component of 0.3 and a y-component of 0.4, what is the magnitude							
	of t	his vector?		1	1			
35	A	9	B	0.5	C	7		
	The magnitude of the summation of the vectors and is :							
36	A	3.5m	B	5m	C	4.47m		
	Wh	ich of the following is not	a ve	ctor quantity?				
37	A	Velocity	B	time	C	acceleration		
	Thr	ree vectors are given by: \vec{A}	=3i	$+3j-4k$, $\vec{B} = -2i-4j+$	2k d	and $\vec{C} = 2i + j - 2k$.		
	The	e vector $\{A+2B+C\}$ is:						
38	A	1i - 4j - 2k	B	-3i+4j-2k	C	-3i - 4j + 2k		
	The	e Cartesian coordinates of t	the p	oint $(r, \theta) = (5, 30^{\circ})$ is:				
39	A	(2.5,4.3)	B	(4.3, 2.5)	C	(15,6)		
	Wh	at are the Cartesian coordi	nates	s of the point $(r, \theta) = (3, 60)$)°)?			
40	A	(1.5, 2.17)	B	(1.5, 2.59)	C	(1.5, 3.64)		

	If x	If x =12cm and y =13cm what is the angle θ ?								
41	A	51.7°	B	47.29°	C	46.1°				
	Which of the following is a vector quantity?									
42	Α	Momentum	B	Speed	С	Work				
	Which of the following is a vector quantity?									
43	A	Weight	B	speed	С	Energy				
	17. Which of the following is vector quantity?									
44	A	Displacement	B	Speed	С	Density				
	Which of the following is not scalar quantity?									
45	A	Energy	B	speed	C	Acceleration				
	Which of the following is not vector quantity?									
46	A	Displacement	B	Distance	С	Momentum.				
	Wh	ich of the following is vec	tor q	uantity?						
47	A	Energy	B	Velocity	C	Pressure				
	The	e Cartesian coordinates of t	he p	oint $(r, \Theta) = (3, 30^0)$ is:						
48	A	(3.6, 1.5).	B	(3.9, 0.9)	C	(2.6, 1.5)				
	The	e Cartesian coordinates of t	he p	oint $(r, \Theta) = (7, 45^0)$ is:						
49	Α	(4.95, 4.5)	B	(4.95, 4.95)	C	(4.1, 4.95)				
	The	e Cartesian coordinates of t	he p	oint $(r, \Theta) = (7, 60^0)$ is:						
50	A	(3.7, 4.5)	B	(3.5, 6.1)	C	(2.6, 5)				

بنك الأسئلة في مقرر الفيزياء العامة لطلاب كلية العلوم (101فيز-4)

	The Cartesian coordinates of the point(r, Θ)= (4,90 ⁰) is:								
51	Α	(4, 4.1)	B	(0, 4)	C	(2.3, 2.3)			
	If x	= 22cm and y= 35cm what	t is tl	he angle Θ ?					
52	Α	52.15 ⁰	B	38.5°	C	57.85 ⁰			
	If $x = 5$ cm and $y = 7$ cm what is the angle Θ ?								
53	Α	54.46 ⁰	B	59.6 ⁰	C	49.7 ⁰			
	If x	= 12cm and y= 15cm what	t is tl	he angle Θ ?					
54	Α	61.41 ⁰	B	58.73 ⁰	C	51.34 ⁰			
	If the second se	he Cartesian coordinates of	f a po	oint is (5.4, 4.7) m. Find th	e po	lar coordinates of this			
55		$(6m \ 41 \ 035^{\circ})$	B	$(4m 31 \ 035^{0})$	C	$(7.16m, 41.035^{\circ})$			
55	Fin	d the magnitude of the su	mms	ation of the vectors A and	R a	nd the angle between			
	them Where $\vec{A} = (2\hat{i} + 2\hat{i})m$, $\vec{B} = (2\hat{i} - 4\hat{i})m$								
56	A	$(5.51 \text{ m}, 23^{\circ})$	R	$(4.47 \text{ m}, 333.4^{\circ})$	С	$(5.55 \text{ m}, 333.4^{\circ})$			
	Fin	d the magnitude of the su	mma	ation of the vectors A and	B a	nd the angle between			
	them. Where, $\vec{A} = (3.5\hat{i} + 5\hat{j})m$, $\vec{B} = (15\hat{i} - 6\hat{j})m$								
57	Α	(15.5 m, 233 ⁰)	B	(18.53 m, 356.9 ⁰)	С	(18.61 m, 333.4 ⁰)			
	Fin	d the components and	mag	gnitude of a body trave	els t	o three consecutive			
	disj	placements where,	\vec{d}	$\hat{f}_1 = 15\hat{i} + 30\hat{j} + 12\hat{k}$,	\vec{d}_2	$=23\hat{i}-14\hat{j}-5\hat{k}$,			
	\vec{d}_3	$= -13\hat{i} + 15\hat{j}$							
58		$(\vec{R} = 25\hat{i} + 31\hat{i} + 7\hat{k})$	Б	$(\vec{R} = 25\hat{i} + 31\hat{j} + 7\hat{k})$	C	$(\vec{R} = 28\hat{i} + 33\hat{j} + 7\hat{k})$			
	A	, (40, 4).	В	, (43.5).		, (40, 4).			
	If :	$\vec{A} = 4\hat{i} - 3\hat{j} \qquad \vec{B} = 4\hat{i} - 3\hat{j}$	-5 <i>ĵ</i>	find					
	Δ)	$\vec{A} \vec{P}$							
	<i>n</i>)	A.D							
	b) [The angle between \vec{A} , \vec{B} .				0			
59	Α	$(7, 5.8^{0})$	B	$(16, 31.6^{0})$	C	(31, 14.36°)			
	If	$\vec{A} = \hat{i} + 2\hat{j} + 3\hat{k} , \qquad \vec{B} =$	$=2\hat{i}$ -	$-3\hat{j}+\hat{k}$, Find \vec{A}	$\langle \vec{B} \rangle$	_			
60	Α	$11\hat{i} + 5\hat{j} - 7\hat{k}$	B	$6\hat{i} + 5\hat{j} - 7\hat{k}$	C	$11\hat{i} + 5\hat{j} - 9\hat{k}$			

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

	If	$\vec{A} = 2\hat{i} - 3\hat{j} + 5\hat{k} , \qquad \vec{B}$	$\vec{B} = \hat{i}$	$-2\hat{j}+2\hat{k}$ Find $\vec{A}\times\vec{B}$					
61	A	$(11\hat{i}+5\hat{j}-7\hat{k})$	B	$(6\hat{i}+5\hat{j}-7\hat{k})$	C	$(4\hat{i}+\hat{j}-\hat{k})$			
	Chapter 3:- Motion in one dimension:								
	The	e position of a particle mov	ving	along the x axis is given by	y x=	$(4t+2t^2)$ m, where t is			
()	in s	. What is the average velo	city i	n m/s during the time inter	rval t	t = 2 s to $t = 4$ s?			
62	Α	16	B	- 4	C	18			
	A body increase its velocity from 3.0 m/s to 9.0 m/s in 0.80 s. What is the average								
(\mathbf{c})	acc	eleration of the body in \mathbf{m}	s"?			75			
63	Α	7.0	В	6.0	C	1.5			
	The	e particle's distance travelle	ed di	vided by the total time inte	erval	is named:			
64	Α	Average velocity	B	Average speed.	C	Average acceleration			
	The velocity vector at t_i is \vec{v}_i and the velocity vector at t_f is \vec{v}_f . Therefore the								
	ave	rage acceleration of the pa	rticle	e during the time interval is	s:				
65	Α	$\vec{a} = \frac{\vec{v_f} + \vec{v_i}}{\vec{a}}$	В	$\vec{a} = \frac{\vec{v_f} - \vec{v_i}}{\vec{v_f} - \vec{v_i}}$	C	$\vec{a} = \frac{\vec{v_f} + \vec{v_i}}{\vec{v_f}}$			
	11	2		$t_f - t_i$		$t_f + t_i$			
	Α	particle with mass m mo	ves	along the x axis and its 2^{2}	posit	ion varies with time			
	acc the	cording to the expression displacement of the partic	x =	$-2t^2 + 4t$ m. In the time	e into	erval t = 0 s to t = 1 s,			
66	A	4m	B	2m	C	5m			
	The	e change of velocity of an	objec	et with time is:					
67	A	Acceleration	B	Velocity	C	Mass			
	Аj	et lands on the aircraft carr	rier a	t 63 m/s. What its accelera	tion	if it stops in 2 s?			
68	A	31.5 m/s ²	B	43 m/s^2	C	- 43 m/s ²			
	Ac	ar move with velocity 120	m/s	with acceleration (- 5 m/s^2	²), wl	nen it stops?			
69	Α	11. 7 s	B	17 s	C	24 s			
	Fin	d the required time for a c	ar to	move 98 m if it started from	om r	est and accelerated at			
- 6	40	m/s^2	-			170			
70	Α	3.7 s	B	2.213 s	C	4./6 s			

	A j	et starts from rest with vel	locity	y, 700m/s, with acceleratio	on 20	m/s^2 , if it travels for			
71	/ Se	900 m	R	657 m	С	490 m			
/ 1	Ał	ov dropped a stone from	a bri	dge. The stone takes 3 s to	\mathbf{c}	lide with water under			
	the	bridge neglecting any air	fricti	on. What is the height of t	the b	ridge over the water?			
	(g =	$= 9.8 \text{ m/s}^2$).	1	-		_			
72	Α	49 m	B	44.1 m	C	56 m			
	Αt	all through from a buildir	ng w	ith high 750 m, if the ball	take	s 10 s to reach to the (1)			
	gro m/s	und, neglecting any air fraction $\frac{2}{3}$	ictio	n. What is the initial veloc	city	(v_0) of ball? $(g = 9.8)$			
73	A	49 m/s	B	44.1 m/s	C	26 m/s			
10	The horizontal range of the projectile is (R) given by:								
74	110	$2 \sin \theta \cos \theta$		$u^{2}\sin 2\theta \cos \theta$	С	$w^2 \sin^2 \theta$			
/+	Α	$\frac{2V_i}{V_i} \sin \theta_i \cos \theta_i$	B	$\frac{V_i \sin 2\theta_i \cos \theta_i}{2}$	U	$\frac{V_i}{2}$			
		8		28		8			
	The	e Instantaneous acceleratio	n of	the particle during the time	e inte	erval is:			
75	A	$\lim_{v \to 0} \frac{\Delta v}{\Delta v}$	B	$\lim \frac{\Delta x}{dx}$	C	$\underline{v}_f - v_i$			
	11	$\Delta t \rightarrow 0 \Delta t$		$\Delta t \rightarrow 0$ 2		$t_f - t_i$			
	The	e change of object's positio	n ov	er interval is:					
76	A	distance	B	Displacement	C	velocity			
	The	e difference between the fin	nal a	nd initial position of an obj	ject i	s:			
77	Α	displacement	B	Area	C	distance			
	The	e location of the particle wi	ith re	espect to a chosen reference	e poi	nt is:			
78	Α	distance	B	Position	C	displacement			
	The	e length of a path followed	by a	particle is:					
79	A	distance	B	Position	C	displacement			
	The	e displacement divided by	time	interval is:					
80	A	average speed	B	average velocity	C	instantaneous speed			

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

	Ave	erage velocity is the	.divi	ded by time interval.					
81	A	distance	B	Displacement	С	speed			
	The total distance divided by total time interval is:								
82	Α	average speed	B	average velocity	C	instantaneous speed			
	Average speed is thedivided by total time interval.								
83	Α	distance	B	Displacement	C	speed			
	The limit of average velocity as the time interval Δt approaches zero is:								
84	A	instantaneous speed	B	instantaneous velocity	С	average velocity			
	The instantaneous velocity is the limit ofas the time interval Δt approaches								
85	zer	0 18:	B	С	C	average speed			
0.5	A	average verocity	D		U	average speed			
	The	e magnitude of the instanta	neou	is velocity is:					
86	A	instantaneous speed	B	instantaneous velocity	C	average speed			
	The	e magnitude of the	is	the instantaneous speed:					
87	A	average speed	B	instantaneous velocity	C	average velocity			
	The	e limit of average accelerat	ion a	as the time interval Δt appr	oach	es zero is:			
88	A	instantaneous acceleration	B	instantaneous velocity	C	average speed			
	The	e limit of as the	he ti	me interval ∆t approaches	zero	o is the instantaneous			
0.0	acc	eleration:							
89	A	instantaneous velocity	В	average acceleration	C	average speed			
		С	hap	ter 4:- Newton Laws:					
	Wh	en no force acts on an obje	ect, t	he acceleration of the object	ct is:				
90	Α	Positive	B	Zero	С	Negative			

المملكة العربية السعودية وزارة التعليم العالي جامعة جازان عمادة السنة التحضيرية

	A fi	rame of reference in which	n Nev	wton's first law is valid, cal	led a	an:			
91	A	non-inertial reference frame	B	inertial reference frame	C	constant velocity reference frame			
	Two forces, F_1 = 20N and F_2 = 40N acts on a 10 kg mass in the same direction. What is								
92	A	3	B	6	C	7			
	A .	$\frac{2}{A} \qquad \qquad$							
93	A	Momentum	B	Power	С	Force			
	A 2	2000 kg car moves straight	t dow	which way at a constant	nt ve	elocity of 35 m/s for 7			
94	sec A	10 kN	n the	car in kin: 70 kN	C	0 kN			
	Wh	en no force acts on an obje	ect, t	he acceleration of the object	ct is	zero, this is:			
95	A	Newton's first law	B	Newton's second law	C	Newton's third law			
	An 1800 kg car moves at a constant speed of 19 m/s. What is the resultant force acting								
06	on t	the car in N?	р	4.0	C	9.8			
90		U	D	$\frac{4.9}{1.9}$	tion	if it stops in 2s?			
07				63		-31.5			
)1		action force is equal in m	ami	tude to the reaction force a	nd•				
98	A	Opposite in direction	B	in the same direction	C	in vertical direction.			
	The	two forces shown act on a p	partic	cle. What is the magnitude of	f the	resultant of these three			
	forc	¹ / _{15N}							
		131							
	_								
		12N # 201							
00	ا د	(10 N		5 70 N		4 (7 N			
99	A	6.12 N	В	5.72 N	C	4.67 N			
	Acc	celeration is direct proport	iona	l to:					
100	Α	Force	B	mass	C	time			

بنك الأسئلة في مقرر الفيزياء العامة لطلاب كلية العلوم (101فيز-4)

	The three forces shown act on a particle. What is the magnitude of the resultant of these three forces? $y = \frac{1}{35^{\circ}} - x$						
101	A	3.5 N	B	2.5 N	С	2.9 N	
	Ele	ctromagnetic forces are for	rces	between:			
102	Α	Objects	B	mass	C	time	
	The	e direction of the net force	on a	n object is:			
103	A	the same as the direction of the object's velocity	B	opposite to the direction of the object's velocity.	C	in the same direction as the object's acceleration	
	When no forces are acting on an object, the acceleration of the object is:						
104	A	Positive	B	zero	С	Negative	
105	The A	e force is define as: The ability to makes change in state of the body	B	The net force equal to the maximum work done on the body	C	The product of mass of body velocity	
106	The A	ere are four fundamental for Gravitational force, electromagnetic forces, nuclear force and weak forces	brces B	: Electromagnetic forces, nuclear force, weak forces and dynamic force	С	Nuclear force, weak forces, dynamic force and Gravitational force	
	The	e Newton's first law states	that				
107	A	In the absence of external forces, an object remains in its state, $\Sigma F = 0$.	B	In the absence of external forces, an object remains in its state, $\Sigma F = W$.	C	The force acts on a body can't changes its state, $\Sigma F = 0$.	
	The	e Newton's second law for	mula	a is:			
108	A	F= ma.	B	w= ma.	С	F=ma+w.	
109	The A	e Newton's second law star The acceleration of an object is directly proportional to the net force acting on it.	tes th B	nat: In the absence of external forces, an object remains in its state	С	The force acts on a body can't changes its state, $\Sigma F = 0$.	

بنك الأسئلة في مقرر الفيزياء العامة لطلاب كلية العلوم (101فيز-4)

	Ma	n push a block of mass	s 80	kg, on the horizontal g	rour	nd with 120 N force		
110	(ne A	$a = 2.2 \text{ m/s}^2$	\mathbf{B}	$a = 1.5 \text{ m/s}^2$	$ \mathbf{C} $	$a = 1.2 \text{ m/s}^2.$		
	Ac	car moves with acceleration	n of :	5.7 m/s^2 with force 4897 N	, det	ermine its mass.		
111	A	m= 767.8 kg	B	m= 900 kg.	C	m= 859.12 kg.		
	Ac	car with mass 2000 kg mc	oves	with velocity 20 m/s on a	ı fric	tion surface. If the car		
112		es 100 m to stop, determine $F = -5000$ N	e the	friction force? F = -4500N	C	F = - 4000 N		
112	Gra	vitational Force is the force	ש e th:	1 - +50010	U			
113	A	The Earth exerts on an body, it is a <i>vector</i> quantity with unit (kg m/s^2).	B	An body exerts on the Earth, it is a scalar quantity with unit (kg m/s^2).	С	An body exerts on the Earth, it is a scalar quantity with dimension (MLT^{-2})		
	The Newton's third law states that:							
114	A	The action force is equal in magnitude to the reaction force but opposite in direction, with mathematical form $(F_{12} = -F_{21})$.	B	The action force is equal in magnitude to the reaction force but opposite in direction, with mathematical form($F_{12} = F_{21}$).	С	The action force is equal in magnitude to the reaction force and the same in direction, with mathematical form($F_{12} = -F_{21}$)		
	The	e gravitational force acting	on a	n object is its:				
115	Α	Weight	B	Mass	C	acceleration		
		Chapter 5:-	Wo	rk, Power, Energy and M	lome	entum:		
	Wo the	rk done by a force on a m displacement of its point of	ovin f ani	g object is zero, when the a	force	e applied isto		
116	A	Parallel	B	Horizontal	С	Perpendicular		
	The	e Linear momentum of a p	artic	le of mass 120 kg moving	wit	n velocity of 30 m/s in		
117	kg. A	m/s 1s: 2.4 x10 ³	B	$4.2 \text{ x} 10^4$	С	$3.6 ext{ x10}^3$		
	The	e time rate of energy transf	er is	called:				
118	A	Momentum	B	Power	С	Pressure		
	Wh	ich of the following is that	forr	n of energy associated with	ı an	object's motion?		
119	A	potential	B	Nuclear	С	Kinetic		
	Wh	at is the kinetic energy in 100 m/s^2	Joul	e for an airplane of mass 8	8000	kg moving at a speed		
120	A	5×10^7	B	4 x 10 ⁶	С	4 x 10 ⁷		

	An	An object of mass 2 kg is lifted a height 5 m from the floor to a table by a woman. Its change in gravitational potential energy is:						
121		nge in gravitational potenti		10 Joule		98 Newton		
121	A	98 Joule	D	IU JOUIE		the stand of 120		
	m/s	The kinetic energy in Joule for an airplane of mass 350 kg moving at a speed of 120 m/s is:						
122	A	5.2×10^6	B	2.52 x 10 ⁶	C	3.2×10^6		
	The	work done when a force of	of 1.5	56×10^2 N exerts at an angle	$e \theta =$	45° to move a box of		
100	50 F	cg for a distance / m is:	 -			770 1 Joula		
123	Α	712.6 Joule	В	746.9 Joule	C	//2.1 Joule		
	An	elevator has a mass of 160)0 kg	, and is carrying passengers	s havi	ing a total mass of 200		
	kg.	A constant friction force o	f 400	00 N retards its motion upv	vard.	What power delivered $\frac{1}{2}$		
101	by t	he motor is required to int	the e	elevator at a constant speed	د to t ا م ا	m/s? (g = 9.8 m/s)		
124	Α	P = 6543 W	В	P = 64920 W	C	P = 74920 w		
	The	scalar product of the actir	ıg fo	rce and the displacement ir	ı dire	ction of the force is:		
125	Α	momentum	B	power	C	work		
	The	work done by the force ir	the	time interval Δt is:				
126	Α	average velocity	B	average acceleration	C	average power		
		is the product of t	he m	ass and the velocity.				
127	Α	force	B	energy	C	linear momentum		
		Chapter 6:- Pressure and Archimedes's:						
	The	The pressure on an object of area 6 m^2 under a force of 22 Newton is:						
128	Α	132 Pascal	B	3.66 Pascal	C	28 Pascal		
	The	magnitude of the Buoy	ant	Forces always equals the	e	of the fluid		
	disj	placed by the object.	I	1	I	·		
129	A	Mass	B	Density	C	Weight		
	Ap	A particlein water, if the density of Object is greater than the Density of fluid.						
130	A	Immersed	B	float	C	semi-merged		

	The pressure P at a depth h below a point in the liquid at which the pressure is Po is greater than Po by amount						
131	A	ρ/hg	B	ρh/g	C	Phg	
	The Upward force exerted by a fluid on any immersed object is called the:						
132	A	Buoyant Forces	B	Gravitational forces	C	Mechanical forces	
	A bar of a solid metal submerged in a fluid because the density of the bar is						
133	Α	less than	B	greater than	C	the same as	
	The magnitude of thealways equals the weight of the fluid displaced by the object.						
134	A	Pressure	B	friction force	C	buoyant force	
	The pressure produces due to applying a force of 3.5×10^4 Newton on a surface of area 2.3×10^{-3} m ² is:						
135	A	1.52 x10 ⁷ Pa	B	1.25 x10 ⁶ Pa	C	$1.52 \text{ x} 10^5 \text{ Pa}$	
	The	definition of density is		, while, pressure	is de	efined as:	
136	A	(Density, is the mass per unit volume) while, (Pressure, is the force per unit area)	B	(Density, is the force per unit area) while, (pressure is the mass per unit volume).	C	(Density, is the mass per unit area) while, (pressure is the mass per unit volume)	
	The mass per unit volume is:						
137	A	Force	B	density	С	acceleration	
	The density is the mass per unit						
138	A	Length	B	Volume	С	area	
	The force per unit area. is:						
139	A	Pressure	B	Work	С	power	
	The	The force per unit is the pressure.					
140	A	Volume	B	Area	С	length	

	The mattress of a water bed is 5 m long by 7 m wide and 150 cm deep. Find the weight					
	of the water and Find the pressure exerted by the water on the floor. ($\rho = 1000 \text{ kg/m}^3$					
141	A	$(F_g = 1476 \text{ N}, P = 2940 P_a)$	B	$(F_g = 1176 \text{ N}, P = 2740 \text{ P}_a).$	C	$(F_g = 514500 \text{ N}, \text{ P} = 14700 \text{ P}_a).$
	Est	imate the force exerted or	1 yo	ur eardrum due to the wa	ter a	above when you are
	swi	mming at the bottom of a be condrum $(A) = 2.5 \times 10^{-5}$	$pool_{5}$	that is 3.57 m deep. (Supple can be a set of the set o	pose	that the surface area $\sqrt{2}$
142	Δ	0.875 N	R	p = 1000 kg/m and $g = 9$.o m	1.52N
174	An	iceberg floating in seawa	ter	The hidden ice can damag	ve a	ship that is still a
	con	siderable distance from th	e vis	sible ice. What fraction of	the	iceberg lies below
	the	water level? ($\rho_{\text{seawater}} = 103$	30 kg	g/m^3 , $\rho_{\rm ice} = 917 \text{ kg/m}^3$).	1	
143	A	77%	B	89%	C	68%
		C	hapt	ter 7:- Electric Current:		
Ques. no.				Question		
	The	e current density (J) is give	n by	:		
144	Α	n q A	B	σΕ.	C	both answers
	The unit of the electric current (Ampere) is a fundamental unit in SI units and is given					
	by:		-	2		1.0%
145	Α	C.s	В	IC/s ²	C	1 C/S
	The	e resistivity of any matter is	s equ	al to:	1	2
146	Α	1/σ	B	Σ	C	1/σ²
	If the voltage is 220V and the current is 10A, the resistance is:					
147	A	22 ohm	B	22 watt	C	2200 ohm
	The 15-gauge copper wire in a typical residential building has a cross-sectional area of					cross-sectional area of
	6.22×10^{-1} m ² . If it carries a current of 15 A, what is the drift speed of the electrons?					
	Assuming that each copper atom contributes one free electron to the current. (Consider the copper contains 6.35×10^{28} electrons/m ³ and $a = 1.6 \times 10^{-19}$ C).					
148	Α	3.73×10^{-3} m/s	B	2.37×10^{-4} m/s	C	2.52×10^{-5} m/s
	Calculate the resistance of an aluminium cylinder that has a length of 14 cm and a					
149	Δ	1.22×10^{-3} O	R	$1 45 \times 10^{-4}$ O		$1.97 \times 10^{-3} \Omega$
177	Cal	culate the resistance per 1	unit	length of a 33-gauge Ni c	chror	ne wire, which has a
	radius of 0.457 mm and if the resistivity of Ni chrome is $1.5 \times 10^{-6} \Omega$.m.					
150	A	3.182 Ω/m	B	2.286 Ω/m	C	2.351 Ω/m

	For	Four resistors are arranged as shown in Figure (a). Find (a) the equivalent resistance of					
		$R_1 R_2 R$	23	R_4			
150	•	(a) 6.0 V	h	120		220	
150	A	1852	B	1252	C	2252	
	For	ur resistors are arranged a	ls sh	own in Figure (a). Find (b) th	e current in the circuit if	
	the	$\begin{array}{c} \text{emf of the battery is 6.0} \\ \hline 2.0 \Omega & 4.0 \Omega & 5.0 \\ \hline \end{array}$	V Ω	7.0 Ω			
		$R_1 R_2 R_3$	3	R_4			
		(a) $6.0 V$					
152	A	0.333A	B	0.223A	C	0.362A	
	Th	e unit of potential differer	nce, 1	the Volt, is equivalent to	whic	h of the following?	
153	A	Ω/Α	B	Α/Ω	C	ΑΩ	
	Th	e direction of electric curr	ent ((I) is takes the same direc	tion	of	
154	A	Negative charges	B	positive charges	C	electron	
	Th	e potential difference V at constant temperatu	ac: ac:	ross a constant resistor	is	directly proportional to	
155	A	Current	B	Resistance	C	Pressure	
	Re	sistivity is the resistance p	oer u	nit			
156	A	area	B	length	C	Volume	
	Calculate the resistance of an glass cylinder that has a length of 10 cm and a cross-						
157	sec	tional area of 3.8×10^{-5} n	n ² if	the resistivity of glass is $\begin{cases} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{cases}$	3×1	$0^{10} \Omega.m$	
137	A Th	ree resistors $30, 60$ and	D 9.0	Ohms are connected in	U para	1.5×10 S2	
	res	istance of the circuit.			puru	nien. I ma the equivalent	
158	A	2.2 Ω	B	1.9 Ω	C	1.6 Ω	
	Four resistors 2.0, 4.0, 5.0, 8.0 are connected. Find the equivalent for them if they connected a In series b- In parallel						
159	A	(22, 0.93) Ω	B	(19, 0.93) Ω	С	(19, 0.88) Ω	

د. أحمد محمد فتحي منسق الشعبة وأستاذ المقرر

بنك الأسئلة في مقرر الفيزياء العامة لطلاب كلية العلوم (101فيز-4)

	The drift velocity of the electrons is directly proportional to:						
160	A	Electric current	B	Cross sectional area	$\begin{bmatrix} 0 \\ p \end{bmatrix}$	umber of electrons er unit volume	
	Chapter 8:- Sound Waves:						
	The	e waves which have a frequencies	uenc	y above the audible range	:		
161	Α	Audible waves	B	Infrasonic waves	C	Ultrasonic waves	
	Wh 2.3	hat is the speed of sou $8 \times 10^9 $ N/m ² and a density 1	nd (.030	(m/s) for Seawater; whi kg/m ³ ?	ch ł	nas a bulk modulus	
162	Α	$1.22 \text{ x} 10^3$	B	1.52×10^3	C	1.25×10^3	
	Fin	d the speed of sound in v	vater	, which has a bulk modul	us of	$f 2.7 \times 10^9 \text{ N/m}^2 \text{ at a}$	
163	ten A	perature of 0 °C and a den 1566.69 m/s	B	of $1.1 \times 10^{\circ}$ kg/m ⁻ .	C	1362.33 m/s	
105	If a	a solid bar of aluminium	1.0	0 m long is struck at or	ne en	d with a hammer, a	
	lon	gitudinal pulse propagates	dow	vn the bar. Find the speed	of so	und in the bar, which	
16/	has	a Young's modulus of 7.0 4952 m/s	\mathbf{R}	1° Pa and a density of 2.7 5100 m/s	x 10	$\frac{1}{5352}$ m/s	
104	A 4952 m/s D 5100 m/s C 5002 m/s						
	bul	k modulus of 1.0×10^9 Pa.		,			
165	Α	2.3×10^3 m/s	B	3.3×10^3 m/s	C	$1.1 \times 10^{3} \text{m/s}$	
	Co	mpute the speed of sound i	in air	at 35.0C.			
166	Α	334 m/s	B	352 m/s	C	343 m/s	
	Two identical machines are positioned the same distance from a worker. The intensity of sound delivered by each machine at the location of the worker is 4.6×10^{-9} W/m ² . Find the sound level heard by the worker ($I_0 = 1 \times 10^{-12}$ W/m ²) When one machine is						
	ope	erating.	1_	I			
167	A	36.62 dB	B	66.12 dB	C	56.11 dB	
	Two identical machines are positioned the same distance from a worker. The intensity of sound delivered by each machine at the location of the worker is $4.6 \times 10^{-9} \text{ W/m}^2$. Find the sound level heard by the worker ($I_0 = 1 \times 10^{-12} \text{ W/m}^2$) When both machines are operating						
168	A	46.44 dB	B	39.63 dB	C	45.45 dB	
<u>u</u>	Find the speed of sound in water, which has a bulk modulus of 2.13×10^9 N/m ² at a						
169	A	1459.45 m/s	$ \mathbf{B} $	1554.52 m/s	C	1554.52 m/s	
	Fin	d the speed of sound in ve	hicle	e gasoline, which has a bu	lk m	odulus of 10.34×10^9	
170	N/r	n^2 and a density of 0.737 >	< 10 ³	kg/m ³ at 15.5°C.		2542.2	
1/0	A	3232.6 m/s	В	5/45.6 m/s	C	5543.2 m/s	

					_		
	If a	If a solid bar of brass 1.00 m long is struck at one end with a hammer, a longitudinal					
, I	pul	se propagates down the	oar.	Find the speed of sound	in t	the bar, which has a	
	Yo	ung's modulus of 1.0×10^{10}	¹ Pa	and a density of 8.5 x 10^3	kg/n	n^3 .	
171	Α	3430 m/s	B	3243 m/s	C	3212 m/s	
	If a	solid bar of brass 10.00 n	n lon	ig is struck at one end with	ı a ha	ammer, a longitudinal	
	pul	se propagates down the ba	r. Fi	nd the time required for the	e pul	se to pass through the	
	bar	? The speed of sound in th	e bar	r is 3430 m/s, Young's mor	dulus	s of brass is $1.0 \ge 10^{11}$	
	Pa	and its density is 8.5×10^3	kg/r	n^3 .			
172	Α	0.0085 s	B	0.0123 s	C	0.0029 s	
	If a	longitudinal pulse takes 1	.0 se	ec to propagate through an	alur	minium bar of density	
	2.7	x 10^3 kg/m ³ and a Young	g's r	nodulus of 7.0 x 10^{10} Pa.	Wha	at is the length of the	
	bar	?				_	
173	Α	4.5 km	B	5.1 km	С	6.2 km	
	Wł	What is the speed of sound in air at 50°C? Where 331 m/s is the speed of sound in air					
	at (at 0° C.					
174	Α	370 m/s	B	360 m/s	C	343 m/s	
	Fin	d sound level heard by a	WO'	rker locating some distand	ce fr	rom a machine if the	
	ma	chine intensity is 2×10^{-7}	W/m	² . Considering that thresh	old ii	ntensity for ear is $I_0 =$	
l l	$1 \times$	$(10^{-12} \text{ W/m}^2)^{-12}$		-		-	
175	Α	43 dB	B	33 dB	C	53 dB	
	Ał	nome theatre consists of 6 s	speał	ker, two of them have 5x10)-7 V	V/m2 each, two have	
j l	2x	10^{-7} W/m ² each, and two ha	ave 1	1×10^{-7} W/m2 each. What is	the	sound level heard by	
	ap	erson sitting in an equal di	stanc	ce from them?		-	
176	A	55 dB	B	44 dB	C	62dB	
			$\cdot - \cdot$		-		