GRE MATH REVIEW \#1

Basic Arithmetic

The whole numbers, or counting numbers, are $0,1,2,3,4,5,6 \ldots$ The integers are $\ldots-4,-3$, $-2,-1,0,1,2,3,4 \ldots$ Recall the number line in deciding whether one negative number is larger than another. Positive integers increase as they move away from 0 ; negative integers decrease as they move away from 0 . For example, 4 is greater than 3 , but -4 is less than -3 .

Consecutive integers are in increasing order without any integers missing between them. For example, $0,1,2,3,4 \ldots$ are consecutive integers; $-2,0,2,4 \ldots$ are consecutive even integers; $-3,-1,1,3 \ldots$ are consecutive odd integers.

Zero is both a whole number and an even integer, but it is neither positive nor negative. The sum of 0 and any number is that number; the product of 0 and any number is 0 .

There are 10 digits in our number system: $0,1,2,3,4,5,6,7,8,9$. An integer greater than 9 is made up of several digits. For example, in the number 5234, 4 is the ones digit, 3 is the tens digit, 2 is the hundreds digit, 5 is the thousands digit.

When multiplying positive and negative numbers, a positive times a positive is a positive; a negative times a negative is a positive; a positive times a negative is a negative:

$$
\begin{array}{ll}
\text { neg }+ \text { neg }=\text { neg } & (\text { neg }) \times(\text { neg })=\text { pos } \\
\text { pos }+ \text { pos }=\text { pos } & \text { (pos) } \times(\text { pos })=\text { pos } \\
\text { neg }+ \text { pos }=! & (n e g) \times(\text { pos })=\text { neg }
\end{array}
$$

An even number is any number that can be divided evenly by 2 with no remainder left over. An odd number cannot be divided evenly by 2 . Any integer is even if its ones digit is even; an integer is odd if its ones digit is odd. Don't confuse even/odd with positive/negative. On the GRE, remember the following:

$$
\begin{array}{ll}
\text { even }+ \text { even }=\text { even } & \text { (even }) x(\text { even })=\text { even } \\
\text { odd }+ \text { odd }=\text { even } & \text { (odd } x(\text { odd })=\text { odd } \\
\text { even }+ \text { odd }=\text { odd } & \text { (even }) x(\text { odd })=\text { even }
\end{array}
$$

An integer is divisible by 2 if its ones digit is divisible by 2.
An integer is divisible by 3 if the sum of its digits is divisible by 3 .
An integer is divisible by 5 if its ones digit is either 0 or 5 .
An integer is divisible by 10 if its ones digit is 0 .
A prime number is a number that can be divided evenly by only itself and 1.0 and 1 are not prime numbers; 2 is the only even prime number. Some examples of prime numbers are $2,3,5,7,11,13,17 \ldots$

A number x is a factor of a number y if y is divisible by x. For example, 2, 3, 4, and 6 are all factors of 12 since they all divide evenly into 12.

A multiple of a number x is x multiplied by any integer except 0 .
For example, 10, 20, 30, 40, etc. are all multiples of 10.
The following is a list of symbols and their meanings you need to know on the GRE:

```
= equal to
# not equal to
> greater than
< less than
greater than or equal to
l less than or equal to
```

The following is a list of terms and their definitions you need to know on the GRE:

sum	the result of addition
difference	the result of subtraction
product	the result of multiplication
quotient	the result of division
numerator	the "top" number in a fraction
denominator	the "bottom" number in a fraction

The six basic operations you will need to perform on the GRE are as follows. Let a and b be any numbers

1. addition: $\mathrm{a}+\mathrm{b}$
2. subtraction: $a-b$
3. multiplication: $\mathrm{ab}=a \bullet b=\mathrm{a} \times \mathrm{b}=(\mathrm{a})(\mathrm{b})$
4. division: $\mathrm{a} / \mathrm{b}=\mathrm{a} \div \mathrm{b}$
5. raising a number to an exponent: a^{2}
6. finding square roots and cube roots: $\sqrt{a}, \sqrt[3]{b}$

In order to find an answer when more than one operation is involved, you must know the correct order of operations. Remember the following mnemonic: Please Excuse My Dear Aunt Sally. PEMDAS stands for Parentheses, Exponents, Multiplication, Division, Addition, and Subtraction. This is the order in which the operations must be performed. For example, $10(2)+(11-1) \div 5-4=18$.

NOTE: MULTIPLICATION AND DIVISION GOES LEFT TO RIGHT, i.e., $10 \div 2 \times 5$ $=25$ NOT 1; ADDITION AND SUBTRACTION ALSO GOES LEFT TO RIGHT, i.e., $10-2+5=13$ NOT 3.

The associative laws of addition and multiplication allow you to regroup numbers in any order when adding or multiplying. If a, b, and c are any numbers,

$$
a+(b+c)=(a+b)+c \text { and } a(b c)=(a b) c
$$

For example, $2+(4+6)=4+(2+6)=(6+4)+2=2+4+6$ and $2(4 \bullet 6)=(4 \bullet 2) 6=$ $6(2 \bullet 4)=6 \bullet 4 \bullet 2$.

The distributive laws are very important on the GRE. Apply them every chance you get. If a, b, and c are any numbers, then

$a(b+c)=a b+a c$	and	$(b+c) a=b a+c a=a b+a c$
$a(b-c)=a b-a c$	and	$(b-c) a=b a-c a=a b-a c$

When you use the distributive law to go from $a b+a c$ to $a(b+c)$, you are actually factoring the expression $\mathrm{ab}+\mathrm{ac}$ by finding the common term to ab and ac which is "a".

EXERCISE 1

1. List five consecutive negative even integers.
2. List five consecutive integers, one of which is 0 .
3. List all the prime numbers less than 30.
4. What is the least integer greater than -5.8 ?
5. What is the greatest integer less than -3.6 ?
6. What is a 3-digit number whose digits add up to 14 ?
7. Without performing division, what is the remainder when:
(a) 99 is divided by 5 ?
(b) $12,345,671$ is divided by 10 ?
8. A multiple of both 3 and 7 is also a multiple of what number?
9. Is the product of 34,569 and 227 odd or even?
10. Is 5223 divisible by (a) 3? (b) 2? (c) 5? (d) 10 ?
11. If 2 even numbers are multiplied together and then the product is multiplied by 37 , will the result be even or odd?
12. Express 56 as the product of prime numbers.
13. If -3 is multiplied by -345 , is the result positive or negative? odd or even?
14. $2(4+10)-6 \div 3=$
15. $5[3(2-4)] \div 15-2=$
16. Use the distributive law to rewrite $3(x+2 y)-5 x(y-4)$.
17. Factor the expression $4 x y z-12 x y+2 y z$.

EXERCISE 1 SOLUTIONS

1. For example, $-10,-8,-6,-4,-2$.
2. For example, $-2,-1,0,1,2$.
3. $2,3,5,7,11,13,17,19,23,29$
4. -5
5. -4
6. For example, 275.
7. (a) Find the greatest multiple of 5 that is still less than 99 and find the difference between that number and 99 . That multiple is 95 , so the remainder is 4 .
(b) The greatest multiple of 10 that is still less than $12,345,671$ is $12,345,670$, so the remainder is 1 .
8. 21
9. odd
10. $\begin{array}{llll}\text { (a) yes } & \text { (b) no } & \text { (c) no } & \text { (d) no }\end{array}$
11. even
12. $56=2 \bullet 2 \cdot 2 \bullet 7$
13. positive, odd
14. 26
15. -4
16. The distributive law results in $3 x+6 y-5 x y+20 x$. Although simplifying algebraic expressions has not yet been discussed, this expression can be simplified to $23 x+6 y-5 x y$.
17. $2 y(2 x z-6 x+z)$
