

Chapter Fifteen

Acids and Bases

The Acid-Base Properties of Water

- acids is a substances that ionize in water to produce H^{+}ions

$$
\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

- bases is a substances that ionize in water to produce OH^{-}ions.

$$
\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

- An acid neutralizes a base

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

- Water has the ability to act either as an acid or as a base.
- Water undergo ionization to a small extent this reaction is sometimes called the autoionization of water.

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O}\left(\mathrm{I} \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})\right. \\
\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \\
K_{c}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
K_{W}=\left[\mathrm{H}^{+}\right]\left[O H^{-}\right]
\end{gathered}
$$

- The ion-product constant $\left(K_{w}\right)$ is the product of the molar concentrations of H^{+}and OH^{-}ions at a particular temperature.
- At $25^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$

The Acid-Base Properties of Water

For water:

$$
K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HO}^{-}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{HO}^{-}\right]=1 \times 10^{-14}
$$

Because water is neutral then

$$
\left[H^{+}\right]=\left[H O^{-}\right]=\sqrt{1 \times 10^{-14}}=1 \times 10^{-7} \mathrm{M}
$$

Solution Is

$$
\begin{array}{ll}
{\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]} & \text {neutral } \\
{\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]} & \text {acidic } \\
{\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]} & \text {basic }
\end{array}
$$

The Acid-Base Properties of Water

Example:

Calculate the $\left[\mathrm{H}^{+}\right]$ions in aqueous ammonia , $\left[\mathrm{OH}^{-}\right]=0.0025 \mathrm{M}$?

$$
\begin{gathered}
K_{W}=\left[H^{+}\right]\left[\mathrm{OH}^{-}\right] \\
{\left[H^{+}\right]=\frac{K_{W}}{\left[O H^{-}\right]}} \\
{\left[H^{+}\right]=\frac{1 x 10^{-14}}{0.0025}=4 \times 10^{-12} M}
\end{gathered}
$$

THUS $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$
therefore the solution is basic

pH—A Measure of Acidity

- Because the concentrations of H^{+}and OH^{-}ions in aqueous solutions are frequently very small numbers and therefore inconvenient to work with, Soren Sorensen in 1909 proposed a more practical measure called pH .
- The pH of a solution is defined as the negative logarithm of the hydrogen ion concentration (in $\mathrm{mol} / \mathrm{L}$).

$$
\begin{aligned}
& p H=-\log \left[H^{+}\right]=-\log \left[H_{3} O^{+}\right] \\
& {\left[H^{+}\right]=10^{-p H}}
\end{aligned}
$$

- For [OH]

$$
\begin{aligned}
& p O H=-\log \left[O H^{-}\right] \\
& {\left[O H^{-}\right]=10^{-p O H}} \\
& p K_{w}=-\log 1 x 10^{-14}=14 \\
& \quad p H+p O H=14
\end{aligned}
$$

$\begin{array}{llllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array} 14$

Acidic

Basic

Increase the acidity
Solution Is
neutral
acidic
basic
$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$

Increase the basisty

At $25^{\circ} \mathrm{C}$

$\left[\mathrm{H}^{+}\right]=1 \times 10^{-7}$	$\mathrm{pH}=7$
$\left[\mathrm{H}^{+}\right]>1 \times 10^{-7}$	$\mathrm{pH}<7$
$\left[\mathrm{H}^{+}\right]<1 \times 10^{-7}$	$\mathrm{pH}>7$

$\left[\mathrm{H}^{+}\right]=1 \times 10^{-7}$
$\mathrm{pH}=7$
$\mathrm{pH}<7$
$\mathrm{pH}>7$

pH—A Measure of Acidity

Example

The concentration of H^{+}ions in a bottle of vinegar was $3.2 \times 10^{-4} \mathrm{M}$ right after the cork was removed. Only half of the vinegar was consumed. The other half, after it had been standing open to the air for a month, was found to have a hydrogen ion concentration equal to $1.0 \times 10^{-3} \mathrm{M}$. Calculate the pH of the vinegar on these two occasions.

$$
\begin{aligned}
& p H=-\log \left[H^{+}\right]=-\log \left(3.2 \times 10^{-4}\right)=3.49 \\
& p H=-\log \left[H^{+}\right]=-\log \left(1.0 \times 10^{-3}\right)=3.00
\end{aligned}
$$

Example

The pH of rainwater collected in a certain region of Saudi Arabia on a particular day was 4.82. Calculate the H^{+}ion concentration of the rainwater.

$$
\begin{aligned}
& p H=-\log \left[H^{+}\right] \\
& {\left[H^{+}\right]=10^{-p H}} \\
& {\left[H^{+}\right]=10^{-4.82}=1.5 \times 10^{-5} \mathrm{M}}
\end{aligned}
$$

$\mathrm{pH} — \mathrm{~A}$ Measure of Acidity

Example

In a NaOH solution $\left[\mathrm{OH}^{-}\right]$is $2.9 \times 10^{-4} \mathrm{M}$. Calculate the pH of the solution?

$$
\begin{aligned}
& p O H=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(2.9 \times 10^{-4}\right)=3.54 \\
& p H+p O H=14 \\
& p H=14-p O H=14-3.54=10.46
\end{aligned}
$$

Weak Acids and Acid Ionization Constants

- Strong acid (or base) have 100 \% dissociation. $\mathrm{HCl}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{H}^{+}(a q)+\mathrm{Cl}^{-}(a q)$
- Weak acid (or base) have incomplete dissociation.
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftarrows \mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{H}^{+}(a q)$

Weak Acids and Acid Ionization Constants

$$
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})
$$

- The acid ionization constant $\left(\mathrm{K}_{\mathrm{a}}\right)$, is the equilibrium constant for the ionization of an acid.

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[A^{-}\right]}{[H A]}
$$

- At a given temperature, the strength of the acid HA is measured quantitatively by the magnitude of K_{a}. The larger K_{a}, the stronger the acid that is, the grater the concentration of H^{+}ions at equilibrium due to its ionization.

$$
\begin{gathered}
{\left[H^{+}\right]=\sqrt{K_{a}[\text { acid }]}} \\
{\left[O H^{-}\right]=\sqrt{K_{b}[\text { base }]}}
\end{gathered}
$$

Weak Acids and Acid Ionization Constants

Example

What is the pH of a 0.5 M HF solution (at $25^{\circ} \mathrm{C}$) if $\mathrm{K}_{\mathrm{a}}=7.1 \times 10^{-4}$?

$$
\mathrm{HF}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})
$$

$$
\begin{aligned}
& {\left[H^{+}\right]=\sqrt{K_{a}[\text { acid }]}} \\
& {\left[H^{+}\right]=\sqrt{7.1 \times 10^{-4} \times 0.5}} \\
& {\left[H^{+}\right]=0.019} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=1.72
\end{aligned}
$$

Weak Acids and Acid Ionization Constants

Example

- What is the pH of a 0.122 M monoprotic acid whose K_{a} is 5.7×10^{-4} ?

$$
\mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{-}(a q)
$$

$$
\begin{aligned}
& {\left[H^{+}\right]=\sqrt{K_{a}[\text { acid }]} } \\
& {\left[H^{+}\right] }=\sqrt{5.7 \times 10^{-4} \times 0.122} \\
& {\left[H^{+}\right] }=0.008 \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=2.08
\end{aligned}
$$

Weak Acids and Acid Ionization Constants

Example

The pH of a 0.10 M solution of formic acid (HCOOH) is 2.39 . What is the K_{a} of the acid?

$$
\mathrm{HCOOH}(\mathrm{aq}) \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCOO}^{-}(\mathrm{aq})
$$

$$
\begin{aligned}
& p H=-\log \left[H^{+}\right] \\
& {\left[H^{+}\right]=10^{-p H}} \\
& {\left[H^{+}\right]=10^{-2.39}=4.1 \times 10^{-3} \mathrm{M}} \\
& {\left[\mathrm{H}^{+}\right]=\sqrt{K_{a}[\text { acid }]}} \\
& {\left[H^{+}\right]^{2}=K_{a}[\text { acid }]} \\
& K_{a}=\frac{\left[H^{+}\right]^{2}}{[\text { acid }]} \\
& \quad K_{a}=\frac{\left[4.1 \times 10^{-3}\right]^{2}}{[0.1]} \\
& K_{a}=1.7 \times 10^{-4}
\end{aligned}
$$

Weak Acids and Acid Ionization Constants

- $\quad K_{a}$ indicates the strength of an acid. Another measure of the strength of an acid is percent ionization.
percent ionization $=\frac{\text { lonized acid concentration at equilibrium }}{\text { Initial concentration of acid }} \times 100 \%$

$$
\text { Percent ionization }=\frac{\left[\mathrm{H}^{+}\right]}{[\mathrm{HA}]_{0}} \times 100 \% \quad[\mathrm{HA}]_{0}=\text { initial concentration }
$$

- The stronger the acid, the greater the percent ionization.

Weak Acids and Acid Ionization Constants

Example

Calculate the percent ionization of hydrofluoric acid at the concentrations of 0.50 M if $\mathrm{K}_{\mathrm{a}}=7.1 \times 10^{-4}$?

$$
\mathrm{HF}(a q) \rightleftarrows \mathrm{H}^{+}(a q)+\mathrm{F}^{-}(a q)
$$

$$
\begin{aligned}
& {\left[H^{+}\right]=\sqrt{K_{a} x[\text { acid }]}} \\
& {\left[H^{+}\right]=\sqrt{7.1 \times 10^{-4} x 0.5}} \\
& {\left[H^{+}\right]=0.019 M}
\end{aligned}
$$

percent ionization $=\frac{\text { lonized acid concentration at equilibrium }}{\text { Initial concentration of acid }} \times 100 \%$
percent ionization $=\frac{0.019}{0.5} \times 100 \%=3.8 \%$

Weak Acids and Acid Ionization Constants

Example

A 0.040 M solution of a monoprotic acid is 3 percent ionized. Calculate the ionization constant of the acid.?
percent ionization $=\frac{\text { lonized acid concentration at equilibrium }}{\text { Initial concentration of acid }} \times 100 \%$

$$
\begin{array}{ll}
& 3=\frac{\left[H^{+}\right]}{0.04} \times 100 \\
& {\left[H^{+}\right]=\frac{0.04 x 3}{100}=0.0012 M} \\
& {\left[H^{+}\right]=\sqrt{K_{a}[\text { acid }]}} \\
& {\left[H^{+}\right]^{2}=K_{a}[\text { acid }]} \\
K_{a}=\frac{\left[H^{+}\right]^{2}}{[\text { acid }]} & K_{a}=\frac{[0.0012]^{2}}{[0.04]} \\
& K_{a}=3.6 \times 10^{-5}
\end{array}
$$

Weak Bases

$$
\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

- The ionization of weak bases is treated in the same way as the ionization of weak acids.
- The base ionization constant $\left(\mathrm{K}_{\mathrm{b}}\right)$, is the equilibrium constant for the ionization of a base.

$$
K_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

- At a given temperature, the strength of the base BA is measured quantitatively by the magnitude of K_{b}. The larger K_{b}, the stronger the base-that is, the greater the concentration of OH^{-}ions at equilibrium due to its ionization
- In solving problems involving weak bases, we follow the same procedure we used for weak acids. The main difference is that we calculate [OH^{-}] first, rather than $\left[\mathrm{H}^{+}\right]$.
- Example

What is the pH of a 0.40 M ammonia solution if $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$?

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$$
\begin{aligned}
& {\left[O H^{-}\right]=\sqrt{K_{b}[\text { base }]}} \\
& {\left[O H^{-}\right]=\sqrt{1.8 \times 10^{-5} x 0.4}} \\
& {\left[O H^{-}\right]=0.0027} \\
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=2.57 \\
& p H+p O H=14 \\
& p H=14-p O H=14-2.57=11.43
\end{aligned}
$$

Problems of Chapter (15)

What is the concentration of H_{+}in a 2.5 M HCl solution and?

HCl is a strong acid, it dissociates 100% in water according to the following formula: $\mathrm{HCl}+\mathrm{H} 2 \mathrm{O}-->\mathrm{Cl}-\mathrm{H}+$

Because HCl dissociates 100% and is a strong acid, $[\mathrm{HCl}]=[\mathrm{H}+]$.
Thus, $[\mathrm{H}+]=2.5$

What is the OH -ion concentration in a $5.2 \times 10.4 \mathrm{M} \mathrm{HNO}_{3}$ solution?

HNO3 dissociate completely, so the $[\mathrm{H}+]=5.2 \times 10^{-4}$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left[5.2 \times 10^{-4}\right]=3.2
$$

$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
K_{w}
$\left[\mathrm{OH}^{-}\right]=\overline{\left[\mathrm{H}^{+}\right]}$
$\left[\mathrm{OH}^{-}\right]=\frac{1 \times 10^{-14}}{5.2 \times 10-4}=1.92 \times 10^{-11} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}$
$=$ Shift $\log (-10.72)=1.90 \times 10^{-11} \mathrm{M}$

Calculate the H_{+}ion concentration in lemon juice having a pH of 2.4

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right]=} & 10^{-\mathrm{pH}} \\
& =\text { Shift } \log (-2.4)=3.98 \times 10^{-3} \mathrm{M}
\end{aligned}
$$

Calculate the pH of a $6.71 \times 10.2 \mathrm{M} \mathrm{NaOH}$ solution?.

$$
\begin{gathered}
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left[6.71 \times 10^{-2}\right]=1.7 \\
\mathrm{pH}=14-\mathrm{pOH}=14-1.17=12.82
\end{gathered}
$$

What is the pH of 0.0200 M aqueous solution of HBr ?

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log [0.0200]=1.69
$$

The pOH of a solution of NaOH is 11.30 , what is the $\left[\mathrm{H}_{+}\right]$for this solution?

$$
\begin{aligned}
& \mathrm{pH}=14-\mathrm{pOH}=14-11.30=2.7 \\
& \begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =10-\mathrm{pH} \\
& =\text { Shift } \log (-2.7)=1.99 \times 10^{-3} \mathrm{M}
\end{aligned}
\end{aligned}
$$

If the $\mathrm{pH}=2$ for an HNO_{3} solution, what is the concentration of HNO_{3} ?

HNO3 is a strong acid, it dissociates 100% in water according to the following formula:

$$
\mathrm{HNO} 3 \rightleftharpoons \mathrm{NO}^{-}+\mathrm{H}^{+}
$$

Because HNO3 dissociates 100% and is a strong acid, [HNO3] $=[\mathrm{H}+]$.

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =10^{-\mathrm{pH}} \\
& =\text { Shift } \log (-2)=0.01 \mathrm{M} \\
& {\left[\mathrm{HNO}_{3}\right]=\left[\mathrm{H}^{+}\right]=0.01 \mathrm{M} }
\end{aligned}
$$

A solution in which $\left[\mathrm{H}_{+}\right]=10.8 \mathrm{M}$ has a Ph of \qquad and is \qquad
a) 8, acidic
b) 6, basic
c) -6 , basic
d) 8, basic

Which of the following solutions has the lowest pH at 25.C? (No calculations required.)
a) 0.2 M NaOH
b) $0.2 \mathrm{M} \mathrm{NH}_{3}$
c) 0.2 M HCl
d) pure water

The equilibrium position of the reaction can be shifted in the forward direction by $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=197 \mathrm{~kJ}$
a) increase pressure
b) decrease volume
c) decrease temperature
d) add SO_{3}

 an analysis for the mixture at equilibrium is performed at a certain temperature. It is found that $\left[\mathrm{N}_{2}\right]=2.0 \mathrm{M},\left[\mathrm{Cl}_{2}\right]=3.0 \mathrm{M}$, and $\left[\mathrm{NCl}_{3}\right]=5.0 \mathrm{M}$. Calculate K_{c} for the reaction at this temperature.
a) 1
b) 0.83
c) 0.46
d) 0.72

Consider the following: (1)

$$
\begin{array}{ll}
1- & 2 \mathrm{~A}(\mathrm{~g})+3 \mathrm{~B}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{C}(\mathrm{~g})+\mathrm{D}(\mathrm{~g}) \\
2- & 2 \mathrm{~A}(\mathrm{aq})+3 \mathrm{~B}(\mathrm{~g} \rightleftharpoons 3 \mathrm{C}(\mathrm{~g}) \\
3- & 2 \mathrm{~A}(\mathrm{aq})+3 \mathrm{~B}(\mathrm{~g}) \longrightarrow 3 \mathrm{C}(\mathrm{~s}) \\
4- & 2 \mathrm{~A}(\mathrm{aq})+3 \mathrm{~B}(\mathrm{aq}) \longrightarrow 3 \mathrm{C}(\mathrm{aq})+\mathrm{D}(\mathrm{aq})
\end{array}
$$

$\ldots \ldots$ is an example of heterogeneous equilibrium and \qquad is an example of homogenous equilibrium?
a) 2and 3, 1 and 4

the value of K_{c} for the reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

, is 1.2. The reaction is started with $\left[\mathrm{H}_{2}\right]_{0}=0.06 \mathrm{M},\left[\mathrm{N}_{2}\right]_{0}=0.07 \mathrm{M}$ and $\left[\mathrm{NH}_{3}\right]_{0}=0.1 \mathrm{M}$. Which of the following is correct as the reaction comes to equilibrium?
a) The concentration of N_{2} will increase
b) The concentration of H_{2} will decrease
c) The concentration of NH_{3} will incre
d) The reaction is at equilibrium

The equilibrium constant, K_{p}, for the reaction

$2 A_{2}(g)+3 B(s) \rightleftharpoons D(g)$

 , is 4.7×10^{-4} at $415^{\circ} \mathrm{C}$. The value of K_{p} for the equilibrium$$
2 \mathrm{D}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{~A}_{2}(\mathrm{~g})+6 \mathrm{~B}(\mathrm{~s}
$$

at the same temperature is \qquad .
a) 1.2×10^{-9}
b) 4.53×10^{6}
c) 4.7×10^{-4}
d) 1.4×10^{10}

For the reaction $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{\mathbf{2}}(\mathrm{g}), \mathrm{K}_{\mathrm{c}}=\mathbf{1 . 8 7}$ at $700^{\circ} \mathrm{C}$ Calculate the concentration of $\mathbf{H}_{\mathbf{2}}$ present at equilibrium if a mixture of $\mathbf{0 . 3 0 0}$ moles of $\mathbf{C O}$ and 0.300 moles of $\mathrm{H}_{2} \mathrm{O}$ is heated to $700^{\circ} \mathrm{C}$ in a 10.0 L container?
n mols of $\mathrm{CO}=0.300 / 10=0.03$
n mols of $\mathrm{H} 2 \mathrm{O}=0.300 / 10=0.03$

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO} \Longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2}
$$

Initial (M)	0.03	0.03	0.0	0.0
Change	$-x$	$-x$	x	x
Equilibrium	$0.03-x$	$0.03-x$	x	x

$$
\mathrm{Kc}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}]}
$$

$$
\text { At equilibrium } \quad K c=\frac{[x][x]}{[0.03-x][0.03-x]}
$$

$$
1.87=\frac{[x]^{2}}{[0.03-x]^{2}}
$$

$$
1.36=\frac{[x]}{[0.03-x]}
$$

$$
\mathbf{x}=0.017
$$

$[\mathrm{H} 2]=\mathrm{x}=0.017 \mathrm{M}$

