

Chapter Fifteen

Acids and Bases

- acids is a substances that ionize in water to produce H⁺ ions
 HCl (aq) → H⁺(aq) + Cl⁻(aq)
- bases is a substances that ionize in water to produce OH⁻ ions.
 NaOH (aq) → Na⁺(aq) + OH⁻(aq)
- An acid neutralizes a base

 $H^{+}(aq) + OH^{-}(aq) \rightarrow H_{2}O(\ell)$

- Water has the ability to act either as an acid or as a base.
- Water undergo ionization to a small extent this reaction is sometimes called the autoionization of water.

$$H_2O(I) \longrightarrow H^+(aq) + OH^-(aq)$$

$$H_2O + H_2O \longrightarrow H_3O^+ + OH^-$$

$$K_c = [H_3O^+][OH^-] = [H^+][OH^-]$$

 $K_W = [H^+][OH^-]$

- The *ion-product constant* (*K_w*) is the product of the molar concentrations of H⁺ and OH⁻ ions at a particular temperature.
- At 25 °C, $K_w = 1.0 \times 10^{-14}$

For water:

$$K_w = [H_3O^+][HO^-] = [H^+][HO^-] = 1x10^{-14}$$

Because water is neutral then

$$[H^+] = [HO^-] = \sqrt{1x10^{-14}} = 1x10^{-7} \text{ M}$$

Solution Is

$[H^+] = [OH^-]$	neutral
[H ⁺] > [OH ⁻]	acidic
[H ⁺] < [OH ⁻]	basic

Example:

Calculate the [H⁺] ions in aqueous ammonia , [OH⁻] =0.0025 M?

 $K_W = [H^+][OH^-]$ $[H^+] = \frac{K_W}{[OH^-]}$

$$[H^+] = \frac{1x10^{-14}}{0.0025} = 4x10^{-12}M$$

THUS [H⁺] < [OH⁻] therefore the solution is basic

- Because the concentrations of H⁺ and OH⁻ ions in aqueous solutions are frequently very small numbers and therefore inconvenient to work with, Soren Sorensen in 1909 proposed a more practical measure called pH.
- The pH of a solution is defined as the negative logarithm of the hydrogen ion concentration (in mol/L).

 $pH = -\log[H^+] = -\log[H_3O^+]$ $[H^+] = 10^{-pH}$

• For [OH]

 $pOH = -\log[OH^{-}]$ $[OH^{-}] = 10^{-pOH}$

 $pK_w = -\log 1x 10^{-14} = 14$

```
pH + pOH = 14
```

Chapter Fifteen/ Acids and Bases pH—A Measure of Acidity 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 **Acidic Basic** Increase the acidity Increase the basisty Solution Is <u>At 25°C</u> $[H^+] = [OH^-]$ $[H^+] = 1 \times 10^{-7}$ pH = 7neutral $[H^+] > [OH^-]$ [H⁺] > 1 x 10⁻⁷ pH < 7acidic [H⁺] < 1 x 10⁻⁷ pH > 7 $[H^+] < [OH^-]$ basic pH is inversely proportional to [H+]

pH—A Measure of Acidity

Example

The concentration of H⁺ ions in a bottle of vinegar was 3.2 x 10⁻⁴ M right after the cork was removed. Only half of the vinegar was consumed. The other half, after it had been standing open to the air for a month, was found to have a hydrogen ion concentration equal to 1.0 x 10⁻³ M. Calculate the pH of the vinegar on these two occasions.

 $pH = -\log[H^+] = -\log(3.2x10^{-4}) = 3.49$ $pH = -\log[H^+] = -\log(1.0x10^{-3}) = 3.00$

pH—A Measure of Acidity

Example

The pH of rainwater collected in a certain region of Saudi Arabia on a particular day was 4.82. Calculate the H⁺ ion concentration of the rainwater.

 $pH = -\log[H^+]$ $[H^+] = 10^{-pH}$ $[H^+] = 10^{-4.82} = 1.5x10^{-5}M$

pH—A Measure of Acidity

Example

In a NaOH solution $[OH^{-}]$ is 2.9 x 10⁻⁴ M. Calculate the pH of the solution?

```
pOH = -\log[OH^{-}] = -\log(2.9x10^{-4}) = 3.54
pH + pOH = 14
pH = 14 - pOH = 14 - 3.54 = 10.46
```


المالية

Weak Acids and Acid Ionization Constants

$$HA(aq) + H_2O(l) = H_3O^+(aq) + A^-(aq)$$

 The acid ionization constant (K_a), is the equilibrium constant for the ionization of an acid.

$$K_a = \frac{[H_3 O^+][A^-]}{[HA]}$$

 At a given temperature, the strength of the acid HA is measured quantitatively by the magnitude of K_a. The larger K_a, the stronger the acid that is, the grater the concentration of H⁺ ions at equilibrium due to its ionization.

$$[H^+] = \sqrt{K_a[acid]}$$
$$[OH^-] = \sqrt{K_a[base]}$$

Example

What is the pH of a 0.5 M HF solution (at 25° C) if K_a = 7.1x10⁻⁴?

$$HF(aq) = H^{+}(aq) + F(aq)$$

 $[H^{+}] = \sqrt{K_a[acid]}$ $[H^{+}] = \sqrt{7.1x10^{-4}x0.5}$ $[H^{+}] = 0.019$

 $pH = -log [H^+] = 1.72$

Example

• What is the pH of a 0.122 M monoprotic acid whose K_a is 5.7 x 10⁻⁴?

$$HA(aq) + H_2O(l) \implies H_3O^+(aq) + A^-(aq)$$

 $[H^{+}] = \sqrt{K_a[acid]}$ $[H^{+}] = \sqrt{5.7 \times 10^{-4} \times 0.122}$ $[H^{+}] = 0.008$

 $pH = -log [H^+] = 2.08$

Example

The pH of a 0.10 M solution of formic acid (HCOOH) is 2.39. What is the K_a of the acid? HCOOH (aq) \longrightarrow H⁺ (aq) + HCOO⁻ (aq)

 $]^{2}$

$$pH = -\log[H^{+}]$$

$$[H^{+}] = 10^{-pH}$$

$$[H^{+}] = 10^{-2.39} = 4.1x10^{-3}M$$

$$[H^{+}] = \sqrt{K_{a}[acid]}$$

$$[H^{+}]^{2} = K_{a}[acid]$$

$$K_{a} = \frac{[H^{+}]^{2}}{[acid]}$$

$$K_{a} = \frac{[4.1x10^{-3}]}{[0.1]}$$

$$K_{a} = 1.7x10^{-4}$$

K_a indicates the strength of an acid. Another measure of the strength of an acid is percent ionization.

percent ionization = $\frac{\text{Ionized acid concentration at equilibrium}}{\text{Initial concentration of acid}} \times 100\%$

Percent ionization =
$$\frac{[H^+]}{[HA]_0} \times 100\%$$

 $[HA]_0$ = initial concentration

The stronger the acid, the greater the percent ionization.

Example

Calculate the percent ionization of hydrofluoric acid at the concentrations of 0.50 M if $K_a = 7.1 \times 10^{-4}$?

 $\mathsf{HF}(aq) \longrightarrow \mathsf{H}^+(aq) + \mathsf{F}^-(aq)$

$$[H^{+}] = \sqrt{K_a x[acid]}$$
$$[H^{+}] = \sqrt{7.1x10^{-4}x0.5}$$
$$[H^{+}] = 0.019M$$

 $percent ionization = \frac{\text{lonized acid concentration at equilibrium} \times 100\%}{\text{Initial concentration of acid}}$ $percent ionization = \frac{0.019}{0.5} \times 100\% = 3.8\%$

Example

A 0.040 M solution of a monoprotic acid is 3 percent ionized. Calculate the ionization constant of the acid.?

Ionized acid concentration at equilibrium x 100% percent ionization = Initial concentration of acid

 $[0.0012]^2$

[0.04]

$$3 = \frac{[H^{+}]}{0.04} X100$$

$$[H^{+}] = \frac{0.04x3}{100} = 0.0012M$$

$$[H^{+}] = \sqrt{K_{a}[acid]}$$

$$[H^{+}]^{2} = K_{a}[acid]$$

$$K_{a} = \frac{[H^{+}]^{2}}{[acid]}$$

$$K_{a} = \frac{[0.0012]}{[0.04]}$$

$$K_{a} = 3.6x10^{-5}$$

$$NH_3(aq) + H_2O(l) \implies NH_4^+(aq) + OH^-(aq)$$

- The ionization of weak bases is treated in the same way as the ionization of weak acids.
- The base ionization constant (K_b), is the equilibrium constant for the ionization of a base.

$$K_{b} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}$$

- At a given temperature, the strength of the base BA is measured quantitatively by the magnitude of K_b. The larger K_b, the stronger the base—that is, the greater the concentration of OH⁻ ions at equilibrium due to its ionization
- In solving problems involving weak bases, we follow the same procedure we used for weak acids. The main difference is that we calculate [OH⁻] first, rather than [H⁺].

Weak Bases

Example

What is the pH of a 0.40 M ammonia solution if $K_b = 1.8 \times 10^{-5}$?

$$NH_3(aq) + H_2O(l) \implies NH_4^+(aq) + OH^-(aq)$$

 $[OH^{-}] = \sqrt{K_b[base]}$ $[OH^{-}] = \sqrt{1.8x10^{-5}x0.4}$ $[OH^{-}] = 0.0027$

 $pOH = -log [OH^{-}] = 2.57$ pH + pOH = 14pH = 14 - pOH = 14 - 2.57 = 11.43

Problems of Chapter (15)

What is the concentration of H₊in a 2.5 M HCl solution and?

HCl is a strong acid, it dissociates 100% in water according to the following formula: HCl + H2O --> Cl- + H+

Because HCI dissociates 100% and is a strong acid, [HCI] = [H+].

Thus, [H+] = 2.5

What is the OH ion concentration in a 5.2 x 10-4 M HNO₃ solution?

HNO3 dissociate completely, so the $[H+] = 5.2 \times 10^{-4}$

```
pH= - Log [H^+] = - log [5.2 \times 10^{-4}] = 3.2
```

```
K_{w} = [H^{+}] [OH^{-}]
[OH^{-}] = \frac{K_{w}}{[H^{+}]}
[OH^{-}] = \frac{1 \times 10^{-14}}{5.2 \times 10^{-4}} = 1.92 \times 10^{-11} M
POH = 14 - 3.2 = 10.72
[OH^{-}] = 10^{-pOH}
= Shift \log (-10.72) = 1.90 \times 10^{-11} M
```


Calculate the H₊ ion concentration in lemon juice having a pH of 2.4

 $[H^+] = 10^{-pH}$

= Shift log (- 2.4) = $3.98 \times 10^{-3} M$

Calculate the pH of a 6.71 X 10-2 M NaOH solution ?.

 $pOH= - Log [OH^{-}] = - log [6.71 \times 10^{-2}] = 1.7$

pH=14-pOH = 14 - 1.17 = 12.82

What is the pH of 0.0200 M aqueous solution of HBr?

 $pH= - Log [H^+] = - log [0.0200] = 1.69$

The pOH of a solution of NaOH is 11.30, what is the [H₊] for this solution?

pH=14 - pOH = 14 - 11 .30 = 2.7

 $[H^+] = 10^{-pH}$

= Shift log (- 2.7) = $1.99 \times 10^{-3} M$

If the pH = 2 for an HNO₃ solution, what is the concentration of HNO₃?

HNO3 is a strong acid, it dissociates 100% in water according to the following formula:

HNO3 \longrightarrow NO3 - + H⁺

Because HNO3 dissociates 100% and is a strong acid, [HNO3] = [H+].

 $[H^+] = 10^{-pH}$

= Shift log (- 2) = 0.01 M

 $[HNO_3] = [H^+] = 0.01 M$

A solution in which $[H_+] = 10_- M$ has a Ph ofand is

- a) 8, acidic
- b) 6, basic
- c) -6, basic
- d) 8, basic

Which of the following solutions has the lowest pH at 25_°C? (No calculations required.) a) 0.2 M NaOH

- b) 0.2 M NH₃
- c) 0.2 M HCl
- d) pure water

The equilibrium position of the reaction can be shifted in the forward direction by

$2SO_3 (g) = 2SO_2 (g) + O_2 (g) \Delta H = 197 kJ$

a) increase pressure

b) decrease volume

c) decrease temperature

d) add SO₃

For the reaction $N_2(g) + 3Cl_2(g) = 2NCl_3(g)$ an analysis for the mixture at equilibrium is performed at a certain temperature. It is found that $[N_2]=2.0$ M, $[Cl_2]=3.0$ M, and $[NCl_3]=5.0$ M. Calculate K_c for the reaction at this temperature.

a) 1
b) 0.83
c) 0.46
d) 0.72

Consider the following: (1)

1-
$$2A(g) + 3B(g) \implies 3C(g) + D(g)$$

$$2 - 2A(aq) + 3B(g) \rightarrow 3C(g)$$

$$3- 2A(aq) + 3B(g) \longrightarrow 3C(s)$$

$$4- 2A(aq) + 3B(aq) \longrightarrow 3C(aq) + D(aq)$$

_____is an example of heterogeneous equilibrium and _____ is an example of homogenous equilibrium?

a) 2and 3, 1 and 4

the value of K_c for the reaction

 $N_2(g) + 3H_2(g) = 2NH_3(g)$

, is 1.2 . The reaction is started with $[H_2]_0 = 0.06 \text{ M}$, $[N_2]_0 = 0.07 \text{ M}$ and $[NH_3]_0 = 0.1 \text{ M}$. Which of the following is correct as the reaction comes to equilibrium?

a) The concentration of N_2 will increase c) The concentration of NH_3 will increase

b) The concentration of H_2 will decrease d) The reaction is at equilibrium

The equilibrium constant, K_p , for the reaction $2A_2(g)+3B(s) = D(g)$, is 4.7 x 10⁻⁴ at 415°C. The value of K_p for the equilibrium

2D (g) 4A₂ (g)+6B (s

at the same temperature is ____

a) 1.2x10⁻⁹

b) 4.53x10⁶

c) 4.7×10^{-4}

d) 1.4x10¹⁰

For the reaction $H_2O(g) + CO(g) \leftrightarrow CO_2(g) + H_2(g)$, $K_c = 1.87$ at 700°C Calculate the concentration of H_2 present at equilibrium if a mixture of 0.300 moles of CO and 0.300 moles of H_2O is heated to 700°C in a 10.0 L container?

n mols of CO= 0.300 / 10 = 0.03 n mols of H2O = 0.300/ 10= 0.03

	$H_2O + O$	co 🔫	<u> </u>	$CO_2 +$	- H ₂
Initial (M)	0.03	0.03		0.0	0.0
Change	-x	-x		х	х
Equilibrium	0.03 - x	0.03 -	х	x	x
Kc = -	[CO ₂][H ₂] [H ₂ O][CO]	<u> </u>			
			[x][x]		
At equ	uilibrium	Kc = -	[0.03 - x][().03-x]	- N.
		1.87 =	[x] ²		
			[0.03 - x]2	
		1.36 =	[x]	_	11
		1.50	[0.03 - x]		
x = 0.017				A CH	
[H2] = x = 0.017 M					

