

مختصر توصيف المقرر

:(Course Information)

معلومات المقرر *

	زياء نووية 1	اسم المقرر: ف
	PHYS 381	رقم المقرر:
	PHYS 251	, , , ,
	اسم ورقم المتطلب المرافق:	
	ىيادس	-33
	(0+0+3)	الساعات المعتمدة:
Module Title:	Nuclear Physics I	
Module ID:	PHYS 3812	
Prerequisite (Co-requisite) :	rerequisite (Co-requisite): PHYS 2512	
Co-requisite :	o-requisite :	
Course Level:	Sixth	
Credit Hours:	3 (3+0+0)	

وصف المقرر:

Nuclear properties: Constituents, nuclear radius, nuclear and atomic masses, nuclear binding energy, nucleon separation energy, semi-empirical mass formula, nuclear angular momentum and parity. **Radioactivity**: Types of radioactive decay, radioactive decay law, natural radioactivity, nuclear stability, radioactivity and theory of transformation, Artificial radioactivity, transuranium elements, Interaction of radiation with matter. **Alpha Decay**: Basic alpha decay processes, theory of alpha emission, angular momentum and parity in alpha decay. **Beta Decay**: Energy release in beta decay, Fermi theory of beta decay, angular momentum and parity selection rules. **Gamma Decay**: energetics of gamma decay, angular momentum and parity selection rules. **Nuclear reactions**: Types of reactions and conservation laws, energetics of nuclear reactions, reaction threshold energy. **Nuclear Fission**: Why nuclei fission, characteristics of fission, energy in fission. **Nuclear Fusion**: basic fusion processes, characteristics of fusion.

أهداف المقرر:

1	Develop a clear understanding of the basic concepts in nuclear physics.	1
2	2 Explain the physical principles underlying the liquid drop model of the nucleus and	
	use it to explain nuclear masses and binding energies.	
3	Acquire knowledge of natural radioactivity and various decay modes.	3
4	Be familiar with the different types of nuclear reactions and conservation laws	4

Learning Outcomes: مخرجات التعليم:

1	Recognize the constituents of the nucleus.	1
2	Identify basic nuclear properties such the nuclear charge, nuclear radius, nuclear mass, nuclear magnetic moments, nuclear spin and parity.	2
3	Identify the nuclear binding energy and semi-empirical mass formula.	3
4	Describe natural radioactivity and the differences between various decay modes.	4
5	Recognize the different types of nuclear reactions.	5

محتوى المقرر: محتوى المقرر:

ساعات التدريس	عدد الأسابيع	قائمة الموضوعات	
(Hours)	(Weeks)	(Subjects)	
6	2	Nuclear properties: constituents of the nucleus, nuclear radius and mass	
6	2	Binding energy and semi-empirical mass formula	
6	2	Natural Radioactivity: Decay law-Nuclear stability	
3	1	Artificial Radioactivity: Discovery of artificial radionuclides – Interaction or radiation with matter	
3	1	Alpha Decay: Basic alpha decay processes, theory of alpha emission, angular	
3	1	momentum and parity in alpha decay	
3	1	Beta Decay : Energy release in beta decay, Fermi theory of beta decay, angular momentum and parity selection rules	
3	1	Gamma Decay: energetics of gamma decay, angular momentum and parity selection rules	
6	2	Nuclear reactions : Types of reactions and conservation laws, energetics of nuclear reactions, reaction threshold energy.	
3	1	Nuclear Fission : Why nuclei fission, characteristics of fission, energy in fission.	
3	1	Nuclear Fusion: basic fusion processes, characteristics of fusion.	

الكتاب المقرر والمراجع المساندة:

References:

سنة النشر	اسم الناشر	اسم المؤلف (رئيسي)	اسم الكتاب المقرر
Publishing Year	Publisher	Author's Name	Textbook title
1988	John Wiley and	Kenneth S. Krane	Introductory Nuclear
1900	Sons	Kenneth S. Krane	Physics
سنة النشر	اسم الناشر	اسم المؤلف (رئيسي)	اسم المرجع
Publishing Year	Publisher	Author's Name	Reference
	Publisher Taylor and		Reference Fundamentals of Nuclear
Publishing Year 2017		Author's Name	
	Taylor and	Author's Name J. Kenneth Shultis and Richard E.	Fundamentals of Nuclear