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The development of calculus in the
seventeenth and eighteenth
centuries was motivated by the need
to understand physical phenomena
such as the tides, the phases of the
moon, the nature of light, and
gravity.

One of the important themes in calculus is the analysis of relationships between physical or
mathematical quantities. Such relationships can be described in terms of graphs, formulas,
numerical data, or words. In this chapter we will develop the concept of a “function,” which is
the basic idea that underlies almost all mathematical and physical relationships, regardless of
the form in which they are expressed. We will study properties of some of the most basic
functions that occur in calculus, including polynomials, trigonometric functions, inverse
trigonometric functions, exponential functions, and logarithmic functions.

BEFORE CALCULUS

0.1 FUNCTIONS

In this section we will define and develop the concept of a “function,” which is the basic
mathematical object that scientists and mathematicians use to describe relationships
between variable quantities. Functions play a central role in calculus and its applications.

DEFINITION OF A FUNCTION
Many scientific laws and engineering principles describe how one quantity depends on
another. This idea was formalized in 1673 by Gottfried Wilhelm Leibniz (see p. xx) who
coined the term function to indicate the dependence of one quantity on another, as described
in the following definition.

0.1.1 definition If a variable y depends on a variable x in such a way that each
value of x determines exactly one value of y, then we say that y is a function of x.

Four common methods for representing functions are:

• Numerically by tables • Geometrically by graphs

• Algebraically by formulas • Verbally
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The method of representation often depends on how the function arises. For example:

• Table 0.1.1 shows the top qualifying speed S for the Indianapolis 500 auto race as a

Table 0.1.1

1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

228.011
231.604
233.100
218.263
223.503
225.179
223.471
226.037
231.342
231.725
222.024
227.598
228.985
225.817
226.366
224.864
227.970
227.472

year t speed S
(mi/h)

indianapolis 500
qualifying speeds

function of the year t . There is exactly one value of S for each value of t .

• Figure 0.1.1 is a graphical record of an earthquake recorded on a seismograph. The
graph describes the deflection D of the seismograph needle as a function of the time
T elapsed since the wave left the earthquake’s epicenter. There is exactly one value
of D for each value of T .

• Some of the most familiar functions arise from formulas; for example, the formula
C = 2πr expresses the circumference C of a circle as a function of its radius r . There
is exactly one value of C for each value of r .

• Sometimes functions are described in words. For example, Isaac Newton’s Law of
Universal Gravitation is often stated as follows: The gravitational force of attraction
between two bodies in the Universe is directly proportional to the product of their
masses and inversely proportional to the square of the distance between them. This
is the verbal description of the formula

F = G
m1m2

r2

in which F is the force of attraction, m1 and m2 are the masses, r is the distance be-
tween them, and G is a constant. If the masses are constant, then the verbal description
defines F as a function of r . There is exactly one value of F for each value of r .

T

D

0 10 20 30 40 50 60 70 80
Time in minutes

Time of
earthquake
shock

Arrival of
P-waves

Arrival of
S-waves

11.8
minutes

9.4
minutes

Surface waves

Figure 0.1.1

In the mid-eighteenth century the Swiss mathematician Leonhard Euler (pronounced
“oiler”) conceived the idea of denoting functions by letters of the alphabet, thereby making
it possible to refer to functions without stating specific formulas, graphs, or tables. To
understand Euler’s idea, think of a function as a computer program that takes an input x,
operates on it in some way, and produces exactly one output y. The computer program is an
object in its own right, so we can give it a name, say f . Thus, the function f (the computer
program) associates a unique output y with each input x (Figure 0.1.2). This suggests the

Input x Output y

Computer
Program

f

Figure 0.1.2 following definition.

0.1.2 definition A function f is a rule that associates a unique output with each
input. If the input is denoted by x, then the output is denoted by f (x) (read “f of x”).

In this definition the term unique means “exactly one.” Thus, a function cannot assign
two different outputs to the same input. For example, Figure 0.1.3 shows a plot of weight
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Figure 0.1.3

versus age for a random sample of 100 college students. This plot does not describe W

as a function of A because there are some values of A with more than one corresponding
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value of W . This is to be expected, since two people with the same age can have different
weights.

INDEPENDENT AND DEPENDENT VARIABLES
For a given input x, the output of a function f is called the value of f at x or the image of
x under f . Sometimes we will want to denote the output by a single letter, say y, and write

y = f(x)

This equation expresses y as a function of x; the variable x is called the independent
variable (or argument) of f , and the variable y is called the dependent variable of f . This
terminology is intended to suggest that x is free to vary, but that once x has a specific value a
corresponding value of y is determined. For now we will only consider functions in which
the independent and dependent variables are real numbers, in which case we say that f is
a real-valued function of a real variable. Later, we will consider other kinds of functions.

Example 1 Table 0.1.2 describes a functional relationship y = f (x) for whichTable 0.1.2

0

3

x

y

3

6

1

4

2

−1

f(0) = 3 f associates y = 3 with x = 0.

f(1) = 4 f associates y = 4 with x = 1.

f(2) = −1 f associates y = −1 with x = 2.

f(3) = 6 f associates y = 6 with x = 3.

Example 2 The equation

y = 3x2 − 4x + 2

has the form y = f(x) in which the function f is given by the formula

f(x) = 3x2 − 4x + 2

Leonhard Euler (1707–1783) Euler was probably the
most prolific mathematician who ever lived. It has been
said that “Euler wrote mathematics as effortlessly as most
men breathe.” He was born in Basel, Switzerland, and
was the son of a Protestant minister who had himself
studied mathematics. Euler’s genius developed early. He

attended the University of Basel, where by age 16 he obtained both a
Bachelor of Arts degree and a Master’s degree in philosophy. While
at Basel, Euler had the good fortune to be tutored one day a week in
mathematics by a distinguished mathematician, Johann Bernoulli.
At the urging of his father, Euler then began to study theology. The
lure of mathematics was too great, however, and by age 18 Euler
had begun to do mathematical research. Nevertheless, the influence
of his father and his theological studies remained, and throughout
his life Euler was a deeply religious, unaffected person. At various
times Euler taught at St. Petersburg Academy of Sciences (in Rus-
sia), the University of Basel, and the Berlin Academy of Sciences.
Euler’s energy and capacity for work were virtually boundless. His
collected works form more than 100 quarto-sized volumes and it is
believed that much of his work has been lost. What is particularly

astonishing is that Euler was blind for the last 17 years of his life,
and this was one of his most productive periods! Euler’s flawless
memory was phenomenal. Early in his life he memorized the entire
Aeneid by Virgil, and at age 70 he could not only recite the entire
work but could also state the first and last sentence on each page
of the book from which he memorized the work. His ability to
solve problems in his head was beyond belief. He worked out in his
head major problems of lunar motion that baffled Isaac Newton and
once did a complicated calculation in his head to settle an argument
between two students whose computations differed in the fiftieth
decimal place.

Following the development of calculus by Leibniz and Newton,
results in mathematics developed rapidly in a disorganized way. Eu-
ler’s genius gave coherence to the mathematical landscape. He was
the first mathematician to bring the full power of calculus to bear
on problems from physics. He made major contributions to virtu-
ally every branch of mathematics as well as to the theory of optics,
planetary motion, electricity, magnetism, and general mechanics.

[Image: http://commons.wikimedia.org/wiki/File:Leonhard_Euler_by_Handmann_.png]
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For each input x, the corresponding output y is obtained by substituting x in this formula.
For example,

f(0) = 3(0)2 − 4(0) + 2 = 2 f associates y = 2 with x = 0.

f(−1.7) = 3(−1.7)2 − 4(−1.7) + 2 = 17.47 f associates y = 17.47 with x = −1.7.

f(
√

2 ) = 3(
√

2 )2 − 4
√

2 + 2 = 8 − 4
√

2 f associates y = 8 − 4
√

2 with x = √
2.

GRAPHS OF FUNCTIONS
If f is a real-valued function of a real variable, then the graph of f in the xy-plane is
defined to be the graph of the equation y = f(x). For example, the graph of the function
f(x) = x is the graph of the equation y = x, shown in Figure 0.1.4. That figure also shows
the graphs of some other basic functions that may already be familiar to you. In Appendix
A we discuss techniques for graphing functions using graphing technology.

Figure 0.1.4 shows only portions of the
graphs. Where appropriate, and unless
indicated otherwise, it is understood
that graphs shown in this text extend
indefinitely beyond the boundaries of
the displayed figure.
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Figure 0.1.4

Since
√

x is imaginary for negative val-
ues of x, there are no points on the
graph of y = √

x in the region where
x < 0.

Graphs can provide valuable visual information about a function. For example, since
the graph of a function f in the xy-plane is the graph of the equation y = f(x), the points
on the graph of f are of the form (x, f(x)); that is, the y-coordinate of a point on the graph
of f is the value of f at the corresponding x-coordinate (Figure 0.1.5). The values of x

for which f(x) = 0 are the x-coordinates of the points where the graph of f intersects the
x-axis (Figure 0.1.6). These values are called the zeros of f , the roots of f(x) = 0, or the
x-intercepts of the graph of y = f(x).

x

y

(x, f (x))
f (x)

y =  f (x)

x

Figure 0.1.5 The y-coordinate of a
point on the graph of y = f(x) is the
value of f at the corresponding
x-coordinate.

THE VERTICAL LINE TEST
Not every curve in the xy-plane is the graph of a function. For example, consider the curve
in Figure 0.1.7, which is cut at two distinct points, (a, b) and (a, c), by a vertical line. This
curve cannot be the graph of y = f(x) for any function f ; otherwise, we would have

f(a) = b and f(a) = c
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which is impossible, since f cannot assign two different values to a. Thus, there is no

x

y

y =  f (x)

x1 0 x2 x3

Figure 0.1.6 f has zeros at x1, 0, x2,
and x3.

function f whose graph is the given curve. This illustrates the following general result,
which we will call the vertical line test.

0.1.3 the vertical line test A curve in the xy-plane is the graph of some function
f if and only if no vertical line intersects the curve more than once.

x

y

a

(a, b)

(a, c)

Figure 0.1.7 This curve cannot be
the graph of a function.

Example 3 The graph of the equation

x2 + y2 = 25

is a circle of radius 5 centered at the origin and hence there are vertical lines that cut the graph
more than once (Figure 0.1.8). Thus this equation does not define y as a function of x.

−6 6

−6

6

x

y

x2 + y2 = 25

Figure 0.1.8

THE ABSOLUTE VALUE FUNCTION
Recall that the absolute value or magnitude of a real number x is defined by

|x| =
{

x, x ≥ 0

−x, x < 0

The effect of taking the absolute value of a number is to strip away the minus sign if the

Symbols such as +x and −x are de-
ceptive, since it is tempting to conclude
that +x is positive and −x is negative.
However, this need not be so, since x

itself can be positive or negative. For
example, if x is negative, say x = −3,
then −x = 3 is positive and +x = −3
is negative.

number is negative and to leave the number unchanged if it is nonnegative. Thus,

|5| = 5,
∣∣− 4

7

∣∣ = 4
7 , |0| = 0

A more detailed discussion of the properties of absolute value is given in Web Appendix
F. However, for convenience we provide the following summary of its algebraic properties.

0.1.4 properties of absolute value If a and b are real numbers, then

(a) |−a| = |a| A number and its negative have the same absolute value.

(b) |ab| = |a| |b| The absolute value of a product is the product of the absolute values.

(c) |a/b| = |a|/|b|, b �= 0 The absolute value of a ratio is the ratio of the absolute values.

(d ) |a + b| ≤ |a| + |b| The triangle inequality

The graph of the function f(x) = |x| can be obtained by graphing the two parts of the
equation

y =
{

x, x ≥ 0

−x, x < 0

separately. Combining the two parts produces the V-shaped graph in Figure 0.1.9.
Absolute values have important relationships to square roots. To see why this is so, recall

from algebra that every positive real number x has two square roots, one positive and one
negative. By definition, the symbol

√
x denotes the positive square root of x.

WARNING

To denote the negative square root you
must write −√

x. For example, the
positive square root of 9 is

√
9 = 3,

whereas the negative square root of 9
is −√

9 = −3. (Do not make the mis-
take of writing

√
9 = ±3.)

Care must be exercised in simplifying expressions of the form
√

x2, since it is not always
true that

√
x2 = x. This equation is correct if x is nonnegative, but it is false if x is negative.

For example, if x = −4, then
√

x2 =
√

(−4)2 = √
16 = 4 �= x
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A statement that is correct for all real values of x is
√

x2 = |x| (1)

−5 −4 −3 −2 −1 10 2 3 4 5
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−2

−1

1

0
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3

4

5

x

y y = |x|

Figure 0.1.9

TECH NOLOGY MASTERY

Verify (1) by using a graphing utility to
show that the equations y = √

x2 and
y = |x| have the same graph.

PIECEWISE-DEFINED FUNCTIONS
The absolute value function f(x) = |x| is an example of a function that is defined piecewise
in the sense that the formula for f changes, depending on the value of x.

Example 4 Sketch the graph of the function defined piecewise by the formula

f(x) =

⎧⎪⎨
⎪⎩

0, x ≤ −1√
1 − x2, −1 < x < 1

x, x ≥ 1

Solution. The formula for f changes at the points x = −1 and x = 1. (We call these the
breakpoints for the formula.) A good procedure for graphing functions defined piecewise
is to graph the function separately over the open intervals determined by the breakpoints,
and then graph f at the breakpoints themselves. For the function f in this example the
graph is the horizontal ray y = 0 on the interval (−�, −1], it is the semicircle y = √

1 − x2

on the interval (−1, 1), and it is the ray y = x on the interval [1, +�). The formula for f

specifies that the equation y = 0 applies at the breakpoint −1 [so y = f(−1) = 0], and it
specifies that the equation y = x applies at the breakpoint 1 [so y = f(1) = 1]. The graph
of f is shown in Figure 0.1.10.

x

y

−1−2 1 2

1

2

Figure 0.1.10

REMARK In Figure 0.1.10 the solid dot and open circle at the breakpoint x = 1 serve to emphasize that the point
on the graph lies on the ray and not the semicircle. There is no ambiguity at the breakpoint x = −1
because the two parts of the graph join together continuously there.

Example 5 Increasing the speed at which air moves over a person’s skin increases

The wind chill index measures the
sensation of coldness that we feel from
the combined effect of temperature and
wind speed.

© Brian Horisk/Alamy

the rate of moisture evaporation and makes the person feel cooler. (This is why we fan
ourselves in hot weather.) The wind chill index is the temperature at a wind speed of 4
mi/h that would produce the same sensation on exposed skin as the current temperature
and wind speed combination. An empirical formula (i.e., a formula based on experimental
data) for the wind chill index W at 32◦F for a wind speed of v mi/h is

W =
{

32, 0 ≤ v ≤ 3

55.628 − 22.07v0.16, 3 < v

A computer-generated graph of W(v) is shown in Figure 0.1.11.

Figure 0.1.11 Wind chill versus
wind speed at 32◦ F
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DOMAIN AND RANGE
If x and y are related by the equation y = f(x), then the set of all allowable inputs (x-values)
is called the domain of f , and the set of outputs (y-values) that result when x varies over
the domain is called the range of f . For example, if f is the function defined by the table
in Example 1, then the domain is the set {0, 1, 2, 3} and the range is the set {−1, 3, 4, 6}.

Sometimes physical or geometric considerations impose restrictions on the allowable
inputs of a function. For example, if y denotes the area of a square of side x, then these
variables are related by the equation y = x2. Although this equation produces a unique
value of y for every real number x, the fact that lengths must be nonnegative imposes the
requirement that x ≥ 0.

One might argue that a physical square
cannot have a side of length zero.
However, it is often convenient mathe-
matically to allow zero lengths, and we
will do so throughout this text where
appropriate.

When a function is defined by a mathematical formula, the formula itself may impose
restrictions on the allowable inputs. For example, if y = 1/x, then x = 0 is not an allowable
input since division by zero is undefined, and if y = √

x, then negative values of x are not
allowable inputs because they produce imaginary values for y and we have agreed to
consider only real-valued functions of a real variable. In general, we make the following
definition.

0.1.5 definition If a real-valued function of a real variable is defined by a formula,
and if no domain is stated explicitly, then it is to be understood that the domain consists
of all real numbers for which the formula yields a real value. This is called the natural
domain of the function.

The domain and range of a function f can be pictured by projecting the graph of y = f(x)

onto the coordinate axes as shown in Figure 0.1.12.

x

y

y =  f (x)

Domain

R
an

ge

Figure 0.1.12 The projection of
y = f(x) on the x-axis is the set of
allowable x-values for f , and the
projection on the y-axis is the set of
corresponding y-values.

Example 6 Find the natural domain of

(a) f(x) = x3 (b) f(x) = 1/[(x − 1)(x − 3)]
(c) f(x) = tan x (d) f(x) = √

x2 − 5x + 6

Solution (a). The function f has real values for all real x, so its natural domain is the
interval (−�, +�).

Solution (b). The function f has real values for all real x, except x = 1 and x = 3,
where divisions by zero occur. Thus, the natural domain is

{x : x �= 1 and x �= 3} = (−�, 1) ∪ (1, 3) ∪ (3, +�)

Solution (c). Since f(x) = tan x = sin x/ cos x, the function f has real values except
where cos x = 0, and this occurs when x is an odd integer multiple of π/2. Thus, the natural
domain consists of all real numbers except

For a review of trigonometry see Ap-
pendix B. x = ±π

2
, ±3π

2
, ±5π

2
, . . .

Solution (d). The function f has real values, except when the expression inside the
radical is negative. Thus the natural domain consists of all real numbers x such that

x2 − 5x + 6 = (x − 3)(x − 2) ≥ 0

This inequality is satisfied if x ≤ 2 or x ≥ 3 (verify), so the natural domain of f is

(−�, 2] ∪ [3, +�)
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In some cases we will state the domain explicitly when defining a function. For example,
if f(x) = x2 is the area of a square of side x, then we can write

f(x) = x2, x ≥ 0

to indicate that we take the domain of f to be the set of nonnegative real numbers (Fig-
ure 0.1.13).x

y y = x2

x

y y = x2, x ≥ 0

Figure 0.1.13

THE EFFECT OF ALGEBRAIC OPERATIONS ON THE DOMAIN
Algebraic expressions are frequently simplified by canceling common factors in the nu-
merator and denominator. However, care must be exercised when simplifying formulas for
functions in this way, since this process can alter the domain.

Example 7 The natural domain of the function

f(x) = x2 − 4

x − 2
(2)

consists of all real x except x = 2. However, if we factor the numerator and then cancel
the common factor in the numerator and denominator, we obtain

f(x) = (x − 2)(x + 2)

x − 2
= x + 2 (3)

Since the right side of (3) has a value of f (2) = 4 and f (2) was undefined in (2), the
algebraic simplification has changed the function. Geometrically, the graph of (3) is the
line in Figure 0.1.14a, whereas the graph of (2) is the same line but with a hole at x = 2,
since the function is undefined there (Figure 0.1.14b). In short, the geometric effect of the
algebraic cancellation is to eliminate the hole in the original graph.
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x

y

y = x + 2

−3−2−1 1 2 3 4 5

1
2
3
4
5
6

x

y

y = 
x − 2
x2 − 4

(b)

(a)

Figure 0.1.14

Sometimes alterations to the domain of a function that result from algebraic simplification
are irrelevant to the problem at hand and can be ignored. However, if the domain must be
preserved, then one must impose the restrictions on the simplified function explicitly. For
example, if we wanted to preserve the domain of the function in Example 7, then we would
have to express the simplified form of the function as

f(x) = x + 2, x �= 2

Example 8 Find the domain and range of

(a) f(x) = 2 + √
x − 1 (b) f(x) = (x + 1)/(x − 1)

Solution (a). Since no domain is stated explicitly, the domain of f is its natural domain,
[1, +�). As x varies over the interval [1, +�), the value of

√
x − 1 varies over the interval

[0, +�), so the value of f(x) = 2 + √
x − 1 varies over the interval [2, +�), which is

the range of f . The domain and range are highlighted in green on the x- and y-axes in
Figure 0.1.15.

1 2 3 4 5 6 7 8 9 10

1
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4

5

y
y = 2 + √x − 1

x

Figure 0.1.15

Solution (b). The given function f is defined for all real x, except x = 1, so the natural
domain of f is {x : x �= 1} = (−�, 1) ∪ (1, +�)
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To determine the range it will be convenient to introduce a dependent variable

y = x + 1

x − 1
(4)

Although the set of possible y-values is not immediately evident from this equation, the
graph of (4), which is shown in Figure 0.1.16, suggests that the range of f consists of all
y, except y = 1. To see that this is so, we solve (4) for x in terms of y:

(x − 1)y = x + 1

xy − y = x + 1

xy − x = y + 1

x(y − 1) = y + 1

x = y + 1

y − 1

It is now evident from the right side of this equation that y = 1 is not in the range; otherwise
we would have a division by zero. No other values of y are excluded by this equation, so the
range of the function f is {y : y �= 1} = (−�, 1) ∪ (1, +�), which agrees with the result
obtained graphically.

−3 −2 −1 1 2 3 4 5 6

−2

−1

1

2

3

4

5

y

y = 
x − 1
x + 1

x

Figure 0.1.16

DOMAIN AND RANGE IN APPLIED PROBLEMS
In applications, physical considerations often impose restrictions on the domain and range
of a function.

Example 9 An open box is to be made from a 16-inch by 30-inch piece of card-
board by cutting out squares of equal size from the four corners and bending up the sides
(Figure 0.1.17a).

(a) Let V be the volume of the box that results when the squares have sides of length x.
Find a formula for V as a function of x.

(b) Find the domain of V .

(c) Use the graph of V given in Figure 0.1.17c to estimate the range of V .

(d) Describe in words what the graph tells you about the volume.

Solution (a). As shown in Figure 0.1.17b, the resulting box has dimensions 16 − 2x by
30 − 2x by x, so the volume V (x) is given by

V (x) = (16 − 2x)(30 − 2x)x = 480x − 92x2 + 4x3
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Figure 0.1.17
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Solution (b). The domain is the set of x-values and the range is the set of V -values.
Because x is a length, it must be nonnegative, and because we cannot cut out squares whose
sides are more than 8 in long (why?), the x-values in the domain must satisfy

0 ≤ x ≤ 8

Solution (c). From the graph of V versus x in Figure 0.1.17c we estimate that the V -
values in the range satisfy

0 ≤ V ≤ 725

Note that this is an approximation. Later we will show how to find the range exactly.

Solution (d). The graph tells us that the box of maximum volume occurs for a value of x

that is between 3 and 4 and that the maximum volume is approximately 725 in3. The
graph also shows that the volume decreases toward zero as x gets closer to 0 or 8, which
should make sense to you intuitively.

In applications involving time, formulas for functions are often expressed in terms of a
variable t whose starting value is taken to be t = 0.

Example 10 At 8:05 A.M. a car is clocked at 100 ft/s by a radar detector that is
positioned at the edge of a straight highway. Assuming that the car maintains a constant
speed between 8:05 A.M. and 8:06 A.M., find a function D(t) that expresses the distance
traveled by the car during that time interval as a function of the time t .

Solution. It would be clumsy to use the actual clock time for the variable t , so let us
agree to use the elapsed time in seconds, starting with t = 0 at 8:05 A.M. and ending with
t = 60 at 8:06 A.M. At each instant, the distance traveled (in ft) is equal to the speed of the
car (in ft/s) multiplied by the elapsed time (in s). Thus,

D(t) = 100t, 0 ≤ t ≤ 60

The graph of D versus t is shown in Figure 0.1.18.

0 10 20 30 40 50 60

1000
2000
3000
4000
5000
6000

Radar Tracking

Time t (s)8:05 a.m. 8:06 a.m.

D
is

ta
nc

e 
D

 (
ft

)

Figure 0.1.18

ISSUES OF SCALE AND UNITS
In geometric problems where you want to preserve the “true” shape of a graph, you must
use units of equal length on both axes. For example, if you graph a circle in a coordinate
system in which 1 unit in the y-direction is smaller than 1 unit in the x-direction, then the
circle will be squashed vertically into an elliptical shape (Figure 0.1.19).

x

y

The circle is squashed because 1
unit on the y-axis has a smaller
length than 1 unit on the x-axis.

Figure 0.1.19

In applications where the variables on
the two axes have unrelated units (say,
centimeters on the y-axis and seconds
on the x-axis), then nothing is gained
by requiring the units to have equal
lengths; choose the lengths to make
the graph as clear as possible.

However, sometimes it is inconvenient or impossible to display a graph using units of
equal length. For example, consider the equation

y = x2

If we want to show the portion of the graph over the interval −3 ≤ x ≤ 3, then there is
no problem using units of equal length, since y only varies from 0 to 9 over that interval.
However, if we want to show the portion of the graph over the interval −10 ≤ x ≤ 10, then
there is a problem keeping the units equal in length, since the value of y varies between 0
and 100. In this case the only reasonable way to show all of the graph that occurs over the
interval −10 ≤ x ≤ 10 is to compress the unit of length along the y-axis, as illustrated in
Figure 0.1.20.
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✔QUICK CHECK EXERCISES 0.1 (See page 15 for answers.)

1. Let f(x) = √
x + 1 + 4.

(a) The natural domain of f is .
(b) f(3) =
(c) f (t2 − 1) =
(d) f(x) = 7 if x =
(e) The range of f is .

2. Line segments in an xy-plane form “letters” as depicted.

(a) If the y-axis is parallel to the letter I, which of the letters
represent the graph of y = f(x) for some function f ?

(b) If the y-axis is perpendicular to the letter I, which of
the letters represent the graph of y = f(x) for some
function f ?

3. The accompanying figure shows the complete graph of
y = f(x).
(a) The domain of f is .
(b) The range of f is .
(c) f (−3) =
(d) f

(
1
2

) =
(e) The solutions to f(x) = − 3

2 are x = and
x = .

−3 −2 −1 321

−2

−1

1

2

x

y

Figure Ex-3

4. The accompanying table gives a 5-day forecast of high and
low temperatures in degrees Fahrenheit (◦F).
(a) Suppose that x and y denote the respective high and

low temperature predictions for each of the 5 days. Is
y a function of x? If so, give the domain and range of
this function.

(b) Suppose that x and y denote the respective low and high
temperature predictions for each of the 5 days. Is y a
function of x? If so, give the domain and range of this
function.

75

52

high

low

70

50

71

56

 65

48

73

52

mon tue wed thurs fri

Table Ex-4

5. Let l, w, and A denote the length, width, and area of a
rectangle, respectively, and suppose that the width of the
rectangle is half the length.
(a) If l is expressed as a function of w, then l = .
(b) If A is expressed as a function of l, then A = .
(c) If w is expressed as a function of A, then w = .
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EXERCISE SET 0.1 Graphing Utility

1. Use the accompanying graph to answer the following ques-
tions, making reasonable approximations where needed.
(a) For what values of x is y = 1?
(b) For what values of x is y = 3?
(c) For what values of y is x = 3?
(d) For what values of x is y ≤ 0?
(e) What are the maximum and minimum values of y and

for what values of x do they occur?

−3 −2 −1 10 2 3
−3

−2

−1

1

0

2

3

x

y

Figure Ex-1

2. Use the accompanying table to answer the questions posed
in Exercise 1.

−2

  5

x

y

2

7

−1

  1

  0

−2

  3

−1

4

1

5

0

6

9

Table Ex-2

3. In each part of the accompanying figure, determine whether
the graph defines y as a function of x.

x

y

(c)

x

y

(d)

x

y

(b)

x

y

(a)

Figure Ex-3

4. In each part, compare the natural domains of f and g.

(a) f(x) = x2 + x

x + 1
; g(x) = x

(b) f(x) = x
√

x + √
x

x + 1
; g(x) = √

x

F O C U S O N CO N C E PTS

5. The accompanying graph shows the median income in
U.S. households (adjusted for inflation) between 1990
and 2005. Use the graph to answer the following ques-
tions, making reasonable approximations where needed.
(a) When was the median income at its maximum value,

and what was the median income when that occurred?
(b) When was the median income at its minimum value,

and what was the median income when that occurred?
(c) The median income was declining during the 2-year

period between 2000 and 2002. Was it declining
more rapidly during the first year or the second year
of that period? Explain your reasoning.

1990 1995 2000 2005
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Median U.S. Household Income in
Thousands of Constant 2005 Dollars
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U
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Source: U.S. Census Bureau, August 2006.

Figure Ex-5

6. Use the median income graph in Exercise 5 to answer the
following questions, making reasonable approximations
where needed.
(a) What was the average yearly growth of median in-

come between 1993 and 1999?
(b) The median income was increasing during the 6-year

period between 1993 and 1999. Was it increasing
more rapidly during the first 3 years or the last 3
years of that period? Explain your reasoning.

(c) Consider the statement: “After years of decline, me-
dian income this year was finally higher than that of
last year.” In what years would this statement have
been correct?
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7. Find f(0), f(2), f(−2), f(3), f(
√

2 ), and f(3t).

(a) f(x) = 3x2 − 2 (b) f(x) =
⎧⎨
⎩

1

x
, x > 3

2x, x ≤ 3

8. Find g(3), g(−1), g(π), g(−1.1), and g(t2 − 1).

(a) g(x) = x + 1

x − 1
(b) g(x) =

{√
x + 1, x ≥ 1

3, x < 1

9–10 Find the natural domain and determine the range of each
function. If you have a graphing utility, use it to confirm that
your result is consistent with the graph produced by your graph-
ing utility. [Note: Set your graphing utility in radian mode when
graphing trigonometric functions.] ■

9. (a) f(x) = 1

x − 3
(b) F(x) = x

|x|
(c) g(x) = √

x2 − 3 (d) G(x) = √
x2 − 2x + 5

(e) h(x) = 1

1 − sin x
(f ) H(x) =

√
x2 − 4

x − 2

10. (a) f(x) = √
3 − x (b) F(x) = √

4 − x2

(c) g(x) = 3 + √
x (d) G(x) = x3 + 2

(e) h(x) = 3 sin x (f ) H(x) = (sin
√

x)−2

F O C U S O N CO N C E PTS

11. (a) If you had a device that could record the Earth’s pop-
ulation continuously, would you expect the graph of
population versus time to be a continuous (unbro-
ken) curve? Explain what might cause breaks in the
curve.

(b) Suppose that a hospital patient receives an injection
of an antibiotic every 8 hours and that between in-
jections the concentration C of the antibiotic in the
bloodstream decreases as the antibiotic is absorbed
by the tissues. What might the graph of C versus
the elapsed time t look like?

12. (a) If you had a device that could record the tempera-
ture of a room continuously over a 24-hour period,
would you expect the graph of temperature versus
time to be a continuous (unbroken) curve? Explain
your reasoning.

(b) If you had a computer that could track the number
of boxes of cereal on the shelf of a market contin-
uously over a 1-week period, would you expect the
graph of the number of boxes on the shelf versus
time to be a continuous (unbroken) curve? Explain
your reasoning.

13. A boat is bobbing up and down on some gentle waves.
Suddenly it gets hit by a large wave and sinks. Sketch
a rough graph of the height of the boat above the ocean
floor as a function of time.

14. A cup of hot coffee sits on a table. You pour in some
cool milk and let it sit for an hour. Sketch a rough graph
of the temperature of the coffee as a function of time.

15–18 As seen in Example 3, the equation x2 + y2 = 25 does
not define y as a function of x. Each graph in these exercises
is a portion of the circle x2 + y2 = 25. In each case, determine
whether the graph defines y as a function of x, and if so, give a
formula for y in terms of x. ■

15.

−5 5

−5

5

x

y 16.

−5 5

−5

5

x

y

17.

−5 5

−5

5

x

y 18.

−5 5

−5

5

x

y

19–22 True–False Determine whether the statement is true or
false. Explain your answer. ■

19. A curve that crosses the x-axis at two different points cannot
be the graph of a function.

20. The natural domain of a real-valued function defined by a
formula consists of all those real numbers for which the
formula yields a real value.

21. The range of the absolute value function is all positive real
numbers.

22. If g(x) = 1/
√

f(x), then the domain of g consists of all
those real numbers x for which f(x) �= 0.

23. Use the equation y = x2 − 6x + 8 to answer the following
questions.
(a) For what values of x is y = 0?
(b) For what values of x is y = −10?
(c) For what values of x is y ≥ 0?
(d) Does y have a minimum value? A maximum value? If

so, find them.

24. Use the equation y = 1 + √
x to answer the following ques-

tions.
(a) For what values of x is y = 4?
(b) For what values of x is y = 0?
(c) For what values of x is y ≥ 6? (cont.)
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(d) Does y have a minimum value? A maximum value? If
so, find them.

25. As shown in the accompanying figure, a pendulum of con-
stant length L makes an angle θ with its vertical position.
Express the height h as a function of the angle θ .

26. Express the length L of a chord of a circle with radius 10 cm
as a function of the central angle θ (see the accompanying
figure).

L

h

u

Figure Ex-25

L

10 cm
u

Figure Ex-26

27–28 Express the function in piecewise form without using
absolute values. [Suggestion: It may help to generate the graph
of the function.] ■

27. (a) f(x) = |x| + 3x + 1 (b) g(x) = |x| + |x − 1|
28. (a) f(x) = 3 + |2x − 5| (b) g(x) = 3|x − 2| − |x + 1|
29. As shown in the accompanying figure, an open box is to

be constructed from a rectangular sheet of metal, 8 in by 15
in, by cutting out squares with sides of length x from each
corner and bending up the sides.
(a) Express the volume V as a function of x.
(b) Find the domain of V .
(c) Plot the graph of the function V obtained in part (a) and

estimate the range of this function.
(d) In words, describe how the volume V varies with x, and

discuss how one might construct boxes of maximum
volume.

x

x

x

x

x

x

x

x

8 in

15 in

Figure Ex-29

30. Repeat Exercise 29 assuming the box is constructed in the
same fashion from a 6-inch-square sheet of metal.

31. A construction company has adjoined a 1000 ft2 rectan-
gular enclosure to its office building. Three sides of the
enclosure are fenced in. The side of the building adjacent
to the enclosure is 100 ft long and a portion of this side is
used as the fourth side of the enclosure. Let x and y be the
dimensions of the enclosure, where x is measured parallel
to the building, and let L be the length of fencing required
for those dimensions.
(a) Find a formula for L in terms of x and y.
(b) Find a formula that expresses L as a function of x alone.
(c) What is the domain of the function in part (b)?

(d) Plot the function in part (b) and estimate the dimensions
of the enclosure that minimize the amount of fencing
required.

32. As shown in the accompanying figure, a camera is mounted
at a point 3000 ft from the base of a rocket launching pad.
The rocket rises vertically when launched, and the camera’s
elevation angle is continually adjusted to follow the bottom
of the rocket.
(a) Express the height x as a function of the elevation an-

gle θ .
(b) Find the domain of the function in part (a).
(c) Plot the graph of the function in part (a) and use it to

estimate the height of the rocket when the elevation an-
gle is π/4 ≈ 0.7854 radian. Compare this estimate to
the exact height.

3000 ft

x

Camera

Rocket

u

Figure Ex-32

33. A soup company wants to manufacture a can in the shape
of a right circular cylinder that will hold 500 cm3 of liquid.
The material for the top and bottom costs 0.02 cent/cm2,
and the material for the sides costs 0.01 cent/cm2.
(a) Estimate the radius r and the height h of the can that

costs the least to manufacture. [Suggestion: Express
the cost C in terms of r .]

(b) Suppose that the tops and bottoms of radius r are
punched out from square sheets with sides of length
2r and the scraps are waste. If you allow for the cost of
the waste, would you expect the can of least cost to be
taller or shorter than the one in part (a)? Explain.

(c) Estimate the radius, height, and cost of the can in part
(b), and determine whether your conjecture was correct.

34. The designer of a sports facility wants to put a quarter-mile
(1320 ft) running track around a football field, oriented as
in the accompanying figure on the next page. The football
field is 360 ft long (including the end zones) and 160 ft wide.
The track consists of two straightaways and two semicircles,
with the straightaways extending at least the length of the
football field.
(a) Show that it is possible to construct a quarter-mile track

around the football field. [Suggestion: Find the shortest
track that can be constructed around the field.]

(b) Let L be the length of a straightaway (in feet), and let x

be the distance (in feet) between a sideline of the foot-
ball field and a straightaway. Make a graph of L ver-
sus x. (cont.)
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(c) Use the graph to estimate the value of x that produces
the shortest straightaways, and then find this value of x

exactly.
(d) Use the graph to estimate the length of the longest pos-

sible straightaways, and then find that length exactly.

360′

160′

Figure Ex-34

35–36 (i) Explain why the function f has one or more holes
in its graph, and state the x-values at which those holes occur.
(ii) Find a function g whose graph is identical to that of f, but
without the holes. ■

35. f(x) = (x + 2)(x2 − 1)

(x + 2)(x − 1)
36. f(x) = x2 + |x|

|x|
37. In 2001 the NationalWeather Service introduced a new wind

chill temperature (WCT) index. For a given outside temper-

ature T and wind speed v, the wind chill temperature index
is the equivalent temperature that exposed skin would feel
with a wind speed of v mi/h. Based on a more accurate
model of cooling due to wind, the new formula is

WCT =
{

T , 0 ≤ v ≤ 3

35.74 + 0.6215T − 35.75v0.16 + 0.4275T v0.16, 3 < v

where T is the temperature in ◦F, v is the wind speed in
mi/h, and WCT is the equivalent temperature in ◦F. Find
the WCT to the nearest degree if T = 25◦F and
(a) v = 3 mi/h (b) v = 15 mi/h (c) v = 46 mi/h.

Source: Adapted from UMAP Module 658, Windchill, W. Bosch and

L. Cobb, COMAP, Arlington, MA.

38–40 Use the formula for the wind chill temperature index
described in Exercise 37. ■

38. Find the air temperature to the nearest degree if the WCT is
reported as −60◦F with a wind speed of 48 mi/h.

39. Find the air temperature to the nearest degree if the WCT is
reported as −10◦F with a wind speed of 48 mi/h.

40. Find the wind speed to the nearest mile per hour if the WCT
is reported as 5◦F with an air temperature of 20◦F.

✔QUICK CHECK ANSWERS 0.1

1. (a) [−1, +�) (b) 6 (c) |t | + 4 (d) 8 (e) [4, +�) 2. (a) M (b) I 3. (a) [−3, 3) (b) [−2, 2] (c) −1 (d) 1
(e) − 3

4 ; − 3
2 4. (a) yes; domain: {65, 70, 71, 73, 75}; range: {48, 50, 52, 56} (b) no 5. (a) l = 2w (b) A = l2/2

(c) w = √
A/2

0.2 NEW FUNCTIONS FROM OLD

Just as numbers can be added, subtracted, multiplied, and divided to produce other
numbers, so functions can be added, subtracted, multiplied, and divided to produce other
functions. In this section we will discuss these operations and some others that have no
analogs in ordinary arithmetic.

ARITHMETIC OPERATIONS ON FUNCTIONS
Two functions, f and g, can be added, subtracted, multiplied, and divided in a natural way
to form new functions f + g, f − g, fg, and f /g. For example, f + g is defined by the
formula

(f + g)(x) = f(x) + g(x) (1)

which states that for each input the value of f + g is obtained by adding the values of
f and g. Equation (1) provides a formula for f + g but does not say anything about the
domain of f + g. However, for the right side of this equation to be defined, x must lie in
the domains of both f and g, so we define the domain of f + g to be the intersection of
these two domains. More generally, we make the following definition.
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