

INTRODUCTORY PHYSICS MULTIPLE CHOICE QUESTIONS

PREPARED BY:

VARIOUS PHYSICS TEACHERS AT TAIBAH UNIVERSITY'S PREP YEAR PROGRAM

1435-36 (2014-15)

CHAPTER 1: INTRODUCTION, MEASUREMENTS, UNITS

	$A = L \times W$	$A = \pi R^2$	Volume =	c = 299,792,458 m/s	$1 \text{ u} = 1.6605 \times 10^{-27} \text{ kg}$
	(Rectangle's area)	(Circle's area)	Area × Height	(speed of light in vacuum)	(atomic mass unit)
	1 m/s = 3.6 km/h	$1 \text{ giga (G)} = 10^9$	$1 \text{ mega} (M) = 10^{6}$	1 kilo (k) = 10 ³	1 centi (c) = 10 ⁻²
Γ	1 milli (m) = 10 ⁻³	1 micro (μ) = 10 ⁻⁶	1 nano (n) = 10 ⁻⁹	1 in. = 2.54 cm	1 ft = 12 in.
	1 yd = 3 ft	1 mi =5280 ft	1 mi =1.61 km	$1 L = 1000 cm^3$	
		Dimension of length: L	Dimension of time: T	Dimension of mass: M	

Formulas & Constants

Accuracy	دقَة
Analysis	تحليل
Base units	الوحدات الأساسية
Concept	مفهوم تحويل
Conversion	تحويل
Data	بيانات
Decimal place	منزلة عشرية
Detect	يكشف
Diameter	قطر دائرة
Digit	منزلة رقمية
Dimension	بعد
Equation	معادلة
Estimate	تقدير
Evidence	دليل
Experiment	تجربة

Key Terms & Definitions

Fact	حقيقة
Guess	تخمين
Hypothesis	فرضية
Law	قانون
Measurement	قياس
Model	نموذج
Observation	ملاحظة
Order of magnitude	الترتيب المقداري
Percentage	نسبة مئوية
Phenomenon	ظاهرة
Power-of-ten	أس العشرة
Precision	ضبط
Prediction	توقع
Prefix	أداة بادئة
Principle	مبدأ

Relationship	علاقة
Rounding	تقريب
Science	علم
Scientific attitude	المنهج العلمي
Scientific method	الطريقة العلمية
Scientific notation	الترميز العلمي
SI System	نظام الوحدات العالمي
Significant figures	الأرقام المعنوية
Speculation	تأمّل
Standard	معيار
Technology	تقنية
Test	اختبار
Theory	نظرية
Uncertainty	هامش الخطأ
Unit	وحدة

Science; Scientific Method; Scientific Attitude

- 1. ^①The test of truth in science is:
- A experiment√
- B speculation
- C hypothesis
- D facts
- 2. ①Good science is distinguished (يتميز) by:
- (عدم التوافق) A inconsistency
- B emotion (العاطفة)
- C imagination (الخيال)
- √ (القياس) D measurements
- ②Our ability to measure something indicates (يشير) how well we _____ that thing.

-	
A	like
В	ignore (يجهل)
ζ	1 /

C know√

- D misunderstand (يسيء الفهم)
- 4. ⁽²⁾The scientific method does NOT include:
- A hypothesis (فرضية)
- ✓ (تأمل) B speculation
- C experiment (تجربة)
- D prediction (توقع)
- 5. ^①A scientific hypothesis is:
- A an experiment (تجربة)
- B a final conclusion (خلاصة)
- ✓ (تخمین مدروس) an educated guess
- D a verified prediction (توقع محقق)
- 6. ⁽²⁾A scientific hypothesis:
- A is always true
- B is always false
- C can be tested for falsehood \checkmark
- D is not important in science

Chapter 1: Introduction, Measurements, Units

- 7. ^③The three main elements of a scientific method are:
- A hypothesis, prediction, conclusion
- B hypothesis, conclusion, speculation
- C speculation, hypothesis, experiment
- D hypothesis, prediction, experiment \checkmark
- 8. ^①Of the following, the only scientific hypothesis is:
- A souls (الأرواح) move faster than light
- B atoms are the smallest particles in the world \checkmark
- C Einstein was the greatest scientist ever
- D space is filled with undetectable (غير مكتشف) matter
- 9. ①Which of these is NOT a scientific hypothesis?
- A atomic nuclei are the smallest particles in nature
- B a magnet will pick up a copper coin
- C cosmic rays cannot penetrate a physics textbook
- D sound is made of untestable waves \checkmark

10. ^(D)A nonscientific hypothesis is:

- A an electron is heavier than a proton
- B heavy objects fall faster than light objects
- C sunset helps poetry \checkmark
- D the Moon is farther than the Sun
- 11. ^①Which of these is NOT a scientific hypothesis?
- A protons carry electric charge
- B undetectable particles exist in the nucleus \checkmark
- C charged particles bend in a magnetic field
- D electricity can travel in plastic
- 12. ③Characteristics (خصائص) of the scientific attitude include:
- A inquiry (استطلاع), integrity (نزاهة), humility√
- B inquiry, integrity, pride (کبریاء)
- C submission (تسليم), integrity, humility (تواضع)
- D submission, inquiry, pride

Physics vs. Other Sciences

- 13. ^①The physical sciences include:
- A biology (علم الأحياء)
- B botany (علم النبات)
- C entomology (علم الحشرات)
- ✓ (علم طبقات الأرض) geology (علم طبقات الأرض)
- 14. ^①The physical sciences do NOT include:
- A chemistry
- ✓ (علم الحيوان) B zoology (علم الحيوان)
- C astronomy (علم الفلك)

- D geology (علم طبقات الأرض)
- 15. ^①The most basic science is:
- A physics√
- B chemistry
- C biology
- D geology
- 16. ⁽²⁾Physics is considered the basic science because:
- A it is most related to our daily experience
- B all other sciences depend on it
- C it is needed for understanding other sciences
- D all of these \checkmark

Models, Theories, and Laws

- 17. @A scientific model helps in _____ some scientific phenomena (ظواهر).
- A rejecting (رفض)
- B changing
- C understanding√
- D combining (دمج)
- 18. @A scientific model relates (ينسب) a difficult-to-see scientific phenomenon (ظاهرة) to something that is:
- A unfamiliar to us
- B ambiguous (غامض)
- C not discovered (یکتشف) yet
- D familiar to us√
- 19. The picture that a scientific model gives for a studied phenomenon (ظاهرة) is:
- √(تقريبي) A approximate
- B exact (دقيق)
- (غیر واضح) C unclear
- D reverse (معکوس)
- 20. @An agreement (توافق) by competent (أكفاء) scientists is a scientific:

A	hypothesis (فرضية)
В	fact (حقيقة)√
С	observation (ملاحظة)
D	model (نموذج)

- 21. ②A hypothesis that has been repeatedly (تكراراً) tested without flaws (خال) becomes a scientific:
- A prediction (توقع)
- B observation (ملاحظة)
- √(قانون) C law
- D experiment (تجربة)

- 22. ②A synthesis (تجميع) of many well-verified (محقق) hypotheses (فرضيات) is a scientific:
- A prediction (توقع)
- √(نظرية) B theory
- (قانون) C law
- D experiment (تجربة)
- 23. ⁽²⁾In science, a theory is:
- A an educated guess
 B less correct than a fact
 C a synthesis (تجميع) of many well-tested hypotheses√
- D unchangeable
- 24. @A scientific fact is rejected (يرفض) if scientists find that it:
- A is disproved (ینقض) by evidence (أدلة)
 B has become more than 500 years old
 C disagrees with local politics
- D actually, a fact is always a fact

25. The equations F = ma is an example of a physics:

А	theory
В	model
С	law√
D	prediction

Uncertainty, Accuracy, and Precision

26. ②When are measurements absolutely (تماماً) precise?

 A
 usually

 B
 sometimes

 C
 always

 D
 never√

27. ^①There is uncertainty associated with every:

- A measurement√
- B law
- C equation
- D principle
- 28. ^①Main causes of uncertainty in measurements are limitations (محدودية) in:
- A instruments' accuracy and experiment time
- B instruments' (أجهزة) accuracy and human ability√
- C experiment time and human ability
- D experiment time and lab conditions
- 29. ①When we use a ruler of 1 millimeter smallest divisions, the uncertainty is approximately (تقريباً) equal to:

- A 0.1 mm
- B 1 mm√
- C 2.5 mm
- D 5 mm
- 30. ①Using a ruler with cm and mm divisions to measure a certain length, we get a value of 12.8 cm. Our measurement can then be written as:

А	$L = 12.8 \pm 1.0 \text{ cm}$	
В	$L = 12.8 \pm 0.01 \text{ cm}$	11 12 12 1/ 15
С	$L = 12.8 \pm 0.2 \text{ cm}$	11 12 13 14 15
D	$L = 12.8 \pm 0.1 \text{ cm}\checkmark$	

31. ②Using a ruler with cm and mm divisions to measure a certain length, we get a value of 12.8 cm. Our measurement can then be written as:

A	$L = 12.8 \text{ cm} \pm 1\%\checkmark$
В	$L = 12.8 \text{ cm} \pm 5\%$
С	$L = 12.8 \text{ cm} \pm 10\%$
D	$L = 12.8 \text{ cm} \pm 20\%$

32. The percent uncertainty in the measurement $L = 20.2 \pm 0.4$ cm is:

A	0.5%
B	1%
С	2%✓
~	

- D 4%
- 33. ⁽²⁾The percent uncertainty in a measurement $A = 2.03 \text{ m}^2$ is:
- A
 0.5% ✓

 B
 2%

 C
 5%

 D
 10%
- 34. ③A scale (ميزان) has ± 0.05 g accuracy. Weighing a diamond (ماسة) on it gives 8.17 g one day and 8.09 g another day. These two measurements:
- A are unacceptable within the scale's accuracy
- **B** are acceptable within the scale's accuracy \checkmark
- C prove that the scale's accuracy is incorrect
- D prove that these are two different diamonds
- 35. ^①The ability of an instrument (جهاز) to repeatedly (تکرارأ) give close (متقارب) measurements is called:
- A accuracy
- B uncertainty
- C deviation
- D precision√

36. ^①The ability of an instrument (جهاز) to give

measurements close (مقارب) to the true values is called:

А	accuracy√
В	uncertainty
С	deviation
D	precision

Significant Figures

37. ^①The number of reliably (بشكل موثوق) known digits (أرقام) in a number is its:

А	uncertainty		
В	accuracy		
С	significant figures√		
D	percent error		
38.	38. ①The number of significant figures in (23.20) is:		
Α	1		
В	2		
~			

 $D 4 \checkmark$

39. ⁽²⁾ The number of significant figures in (0.062) is:

B 2√ C 3 D 4	А	1
	В	2✓
D 4	С	3
	D	4

40. The number of decimal places in (0.062) is:

А	1
В	2
С	3√
D	4

41. The area of a (10.0 cm \times 6.5 cm) rectangle is correctly given as:

A	$65 \text{ cm}^2 \checkmark$
В	65.0 cm^2
С	65.00 cm^2
D	65.000 cm^2

- 42. ②The significant figures in the product of two numbers ($P = A \times B$) should be the same as the ______ significant figures of A and B.
- A most (أكثر)
- √(أقل) B least
- C average (متوسط)
- D inverse (عکسي)

43. The accuracy in the sum of two numbers (S =

A + B) should be the same as the _____ accuracy of A and B.

- A most (أكثر) B least (أقل)√ C average (متوسط) D inverse (عكسي)
- 44. ②Taking accuracy into account, the difference D = A B between two numbers, A = 3.6 and B = 0.57, is correctly written as:

A	3.03
В	3.00
С	3.003
D	3.0✓

45. ②Taking accuracy into account, the sum S = A + B of two numbers, A = 3.6 and B = 0.40, is correctly written as:

А	4.0✓
В	4.00
С	4
D	04.

46. ②Taking significant figures into account, the product $P = A \times B$ of two numbers, A = 12.0 and B = 12, is correctly written as:

A	144
В	140√
С	150
D	100

47. DTaking significant figures into account, the quotient $Q = A \div B$ of two numbers, A = 12.0 and B = 12, is correctly written as:

Α	1.00
В	1
С	1.0√
D	1.000

- A 0.7
- B 0.6667
- C 0.667
- D 0.67√
- 49. \bigcirc For A = 0.01234, B = 0.00123, and C = 0.00012, the number with the most significant figures is:
- A A only√
- B B only

С	С	on	ly
---	---	----	----

D they all are the same

50. \bigcirc For A = 0.01234, B = 0.00123, and C = 0.00012, the number with the most decimal places is:

A	A only
В	B only
С	C only
D	they all are the same \checkmark

Scientific Notation

51. ②Scientific notation allows the number of significant figures to be:

А	clearly expressed√
В	carefully hidden
С	neglected
D	avoided

52. ^①In the scientific notation, 36900 is written as:

Α	3.69×10^{3}
В	$3.69 \times 10^4 \checkmark$
С	36.9×10^3
D	0.369×10^4

53. ^①The scientific notation for 325 is:

А	$3.25 \times 10^2 \checkmark$
В	3.25×10^1
С	32.5×10^{0}
D	32.5×10^{-1}

54. ^①In the scientific notation, 0.0021 is written as:

C 21×10^{-3}	
4	
D 2.1×10^{-4}	

55. ^①The scientific notation for 7.33 is:

- A 7.33×10^2
- $\begin{array}{c|c} B & 7.33 \times 10^1 \\ \hline C & 7.33 \times 10^0 \checkmark \end{array}$
- D 7.33×10^{-1}
- $D = 1.33 \times 10^{-1}$
- 56. The number 3.69×10^2 is equivalent to:

А	369√
В	36.9
С	3.69
D	0.369

57. ①The number 3.7×10^{-1} is equivalent to:

- A 3.70
- B 0.37√
- C 37.0
- D 0.037

58. The decimal form for 7.62×10^2 is:

 A
 7.62

 B
 762√

 C
 76.2

 D
 0.762

59. ⁽¹⁾ The decimal form for 6.150×10^{-4} is:

- A 0.0615000
- B 0.0061500
- C 0.0006150√

D 0.0000615

60. ⁽²⁾Taking significant figures into account, the product $P = A \times B$ of two numbers, $A = 2.079 \times 10^2$ and $B = 0.072 \times 10^{-1}$, is correctly written as:

A	1.49688
В	1.497
С	1.5√
D	1.50

- 61. ②For A = 3.69×10^4 , B = 3.690×10^2 , and C = 3.6900×10^{-3} , the number with the most significant figures is:
- A A only
- B B only
- C C only \checkmark
- D they have same number of significant figures

Units & Standards

62. @A standard is a fixed reference (مرجع) for a:

- A modelB equation
- C law
- D unit√
- 63. ^①The standard of the meter is the distance traveled by light in vacuum in 1/299792458 of a(an):
- A hour
- B second√
- C minute
- D day
- 64. ①The old standard of the second was 1/86400 of an average solar (شمسي):

А	hour
В	minute
С	day√
D	year

- 65. ①The new standard of the second is defined in terms of the frequency of radiation (إشعاع) emitted by:
- A electronic devices B the sun
- C X-rays
- D cesium atoms√
- 66. ^①The standard of the kilogram, kept at the Bureau of weights and Measures in France, is a cylinder of:
- A platinum-iridium√
- B gold-silver
- C wood-iron
- D radium-uranium

67. ^①The SI unit of mass is the:

А	newton
В	kilogram√
С	pound
D	gram
68.	^① Which of the following is NOT an SI unit?

А	newton
В	kilogram
С	pound√
D	ampere

SI Prefixes & Base Units

69. ^①The SI abbreviation for 36 centimeters is:

А	36 centim
В	36 cmeter
С	36 cm√
D	36 centimeters
70.	1 Mm (mega-meter) equals:
А	1000 m
В	1000 km√
С	1000000 km
D	100000 m
71.	¹ μg (microgram) equals:
А	0.0000001 g
В	0.0001 g
С	0.000001 g√
	·

D 0.00001 g

72. ^①Of the following SI units, the only base unit is:

A newton

- B watt
- C gram
- D ampere√
- 73. ⁽¹⁾Of the following SI units, the only derived (مشتق) unit is:
- A volt√

B kilogram

C kelvin

D meter

74. ⁽²⁾A time interval of 60.0 µs is equal to:

- A 0.0600 s
- B 0.00600 s
- C 0.000600 s
- D 0.0000600 s√

75. @An electric current of 3×10^{-9} A is equal to:

А	3	μA
---	---	----

- B 3 MA
- C $3 nA \checkmark$
- D 3 mA

Unit Conversion

76. ^①Converting 215 cm to meters gives:

- A 0.0215 m B 0.215 m C 21.5 m
- D 2.15 m√
- 77. ^①A distance of 0.05 km is equal to:
- A 5000 cm√
- B 500 cm
- C 50000 cm
- D 500000 cm

78. ①A length of 286.6 mm is equal to:

- A 28.66 cm√
- B 286.6 cm
- C 2.866 m
- D 0.00286 µm

79. ^①Convert 84 in. to feet:

A	5 ft
R	6 ft

C 7 ft√

D 8 ft

80. ^①Convert 15 miles to the nearest kilometers:

А	18 km
В	24 km√
С	33 km
D	42 km

81. \bigcirc Convert 258 cm² to m²:

А	$0.0258 \text{ m}^2 \checkmark$
В	0.258 m^2
С	2.58 m ²
D	25.8 m ²

82. \bigcirc Convert 0.65 cm³ to mm³:

А	6500 mm ³
В	6.5 mm ³
С	65 mm ³
D	$650 \text{ mm}^3 \checkmark$

83. ⁽²⁾A distance of 10 ft is equal to:

А	305 m
В	305 cm√
С	30.5 cm
D	30.5 m

84. ^①Express 10 in. in centimeters:

А	0.254 cm
В	254 cm
С	25.4 cm√
D	2.54 cm

85. @Convert 2 h 15 min to seconds:

А	8100 s√
В	2100 s
С	5900 s
D	3500 s ³

86. ②A school speed-zone (نطاق) is 30 km/h. Three cars A, B, and C are going at speeds $v_A = 8$ m/s, $v_B = 9$ m/s, and $v_c = 10$ m/s. The cars that will receive speeding tickets are:

А	A, B, and C	
В	C only	
С	B and C \checkmark	
D	none	

87. ⁽²⁾The maximum capacity in liters of a 3-m³ water tank (خزان) is:

A 30 L

- B 3000 L√
- C 300 L

D 3 L

88. ^②One light year is:

- A the speed of light in vacuum
- B the time that sunlight takes to reach the Moon
- C the distance light travels in 1 year \checkmark
- D the time that sunlight takes to reach the Earth
- 89. ③If there are 3×10^7 seconds in one year, a distance of one light year is equal to:
- A $9 \times 10^{15} \text{ m}$ B $9 \times 10^{13} \text{ m}$
- $B 9 \times 10^{10} m$
- C 9×10^{11} m
- D 9×10^9 m

Order of Magnitude; Estimation

90. @Rounding (تقريب) a number to one digit multiplied by its power-of-ten gives its:

А	precision	
В	accuracy	
С	uncertainty	
D	order of magnitude√	

91. ⁽²⁾The 14 highest peaks in the world are between 8000 m and 9000 m high. The order-of-magnitude of their height (ارتفاع) is:

А	$1 \times 10^4 \text{ m}$
В	$0.1 imes 10^4 ext{ m}$
С	$2 \times 10^4 \text{ m}$
D	$10 \times 10^4 \text{ m}$

92. @A lake (بحيرة) is roughly (تقريباً) circular, with a 1km diameter and 10-m average depth (عمق). Its water capacity can be estimated as:

	$1 \times 10^6 \text{ m}^3$
В	$1 \times 10^7 \text{ m}^3 \checkmark$
С	$1 \times 10^8 \text{ m}^3$
D	$1 \times 10^9 \text{ m}^3$

93. ①The thickness (سماكة) of a 200-page book is 1.0 cm. The thickness of one sheet of this book can be estimated as:

- A 0.001 mm
- B 0.01 mm
- C 0.1 mm√
- D 1 mm

94. @If an average human lives for 70 years, and if the

Chapter 1: Introduction, Measurements, Units

heartbeat rate is 80 beats/min, the number of heartbeats in a lifetime can be estimated as:

А	3×10^{6}
В	3×10^7
	3×10^8
D	$3 \times 10^9 \checkmark$

Dimensions

95. ^①The dimensions of area are:

Α	$L^2 T$
В	$L^2 \checkmark$
С	L^3/T^2
D	$L^2 T^{-1}$

96. ^①The dimensions of volume are:

А	$L^3 \checkmark$
В	L^2
	L^3/T^2
D	$L^2 T^{-1}$

97. ⁽²⁾The dimensions of force are:

A LMT

B L M T⁻² \checkmark

C $L^3 M^2/T^2$

 $D L^2 M T^{-1}$

98. ⁽²⁾The dimensions of acceleration are:

A L T

B L T⁻²√

 $C L^3/T^2$

 $D L^2 T^{-1}$

99. ⁽²⁾ The dimensions of momentum (p = mv) are:

 $\begin{array}{c|c} A & L M T \\ \hline B & L M T^{-2} \\ \hline C & L M T^{-1} \checkmark \end{array}$

 $D L^2 M T^{-1}$

100. ⁽²⁾Which of the following is dimensionally correct?

A speed = acceleration / time

B distance = speed / time

C force = mass \times acceleration \checkmark

D density = mass \times volume

CHAPTER 2: MOTION & ENERGY

Formulas & Constants

$\rho = \frac{m}{V}$	Average speed: $\bar{v} = \frac{d}{t} = \frac{v_f + v_i}{2}$	$a = \frac{v_f - v_i}{t}$	$v_f = v_i + g.t$ $v = g.t (v_i = 0)$	$d = \frac{1}{2} a.t^{2} + v_{i}.t$ $d = \frac{1}{2} g.t^{2} (v_{i} = 0)$	ΣE = constant (energy consrv.)
F = m.a	w = m.g	W = F.d	P = W / t	$KE = \frac{1}{2} m.v^2$	PE = m.g.h
w = m.g	W = F.d	P = W / t	$KE = \frac{1}{2} m.v^2$	PE = m.g.h	$V_{\rm f} = \sqrt{2 \text{ g. h}}$
$F_{A \text{ on } B} = F_{B \text{ on } A}$	$\mathbf{R}^2 = \mathbf{X}^2 + \mathbf{Y}^2$	$\tan \theta = Y / X$	1 m/s = 3.6 km/h	$g = 10 \text{ m/s}^2$	1 hp = ¾ kW

Acceleration	تسارع
Action	فعل
Air resistance	مقاومة الهواء
Average	متوسط
Component	عنصر / مُكَوِّن/ مُرَكِّب
Direction	اتجاه
Displacement	إزاحة
Distance	مسافة
Dynamic	حركي
Energy	طاقة
Equilibrium	اتزان
Force	قوة
Free fall	سقوط حر احتکاك
Friction	احتكاك
Gravity	جاذبية

Key Terms & Definitions

أفقر القد تفار
لحم تفاع
الط
کتا
مقد
ميک
حر
قوة
القو
Ч
قدر
قذيا
اسة

Resultant	محصّلة
Reaction	ردة فعل
Resolution	تحليل
Speed	السرعة القياسية
Static	سكوني
Support force	قوة الدعم
Tension	توتر
Terminal speed	السرعة الحدية
Vector	كمية متجهة
Velocity	السرعة المتجهة
Vertical	رأسي أو عمودي
Volume	حجم
Weight	وزن
Work	شغل

Vectors

- 1. Scalar is a quantity that does not need:
- A value
- B magnitude
- C direction√
- D unit
- 2. Vector is a quantity that needs:
- A direction only
- B magnitude only
- C unit only
- D magnitude and direction \checkmark

3. Example of a scalar is:

- A velocity
- B distance√
- C acceleration
- D force
- 4. Example of a vector is:

- A velocity√
- B distance
- C speed
- D time
- 5. For linear motion, the angle between the velocity and acceleration vectors is:
- Aalways 0° Balways 180° C 0° or 180° Dalways 90°
- 6. Adding two perpendicular vectors (\vec{A}) and (\vec{B}) gives a resultant (\vec{R}) with magnitude:

А	$R = \sqrt{A^2 + B^2} \checkmark$	B
В	$\mathbf{R} = \mathbf{A}^2 + \mathbf{B}^2$	R
С	$\mathbf{R} = \sqrt{\mathbf{A} + \mathbf{B}}$	· · · · A
D	$R = 1 / \sqrt{A^2 + B^2}$	

7. Two perpendicular forces, $F_1 = 40$ N and $F_2 = 30$ N, act on a brick. The magnitude of the net force (F_{net}) on the brick is:

А	70 N	30 N
В	50 N√	net
С	0 N	
D	10 N	40 N

8. If an airplane heading north with speed $v_P = 400$ km/h faces a westbound wind ((\underline{v}_P)) of speed $v_A = 300$ km/h, the resultant velocity of the plane (\vec{v}) is:

	F in t (1) in	$\gamma $ $\uparrow \rightarrow$
А	500 km/h, north-west√	
В	700 km/h, north-east	Ň
С	500 km/h, north-east	V _A
D	700 km/h, north-west	

Decomposing (or resolving) a vector (A) into two components in perpendicular directions (A_x and A_y) gives :

	0	
А	$\mathbf{A}_{\mathbf{x}} + \mathbf{A}_{\mathbf{y}} = \mathbf{A}$	Â,
В	$A_x + A_y = A^2$	
С	$A_x^2 + A_y^2 = A$	e A _x x
D	$A_x^2 + A_y^2 = A^2 \checkmark$	

Linear Motion, Velocity, Acceleration

10. To calculate an object's average speed we need to know the:

A	acceleration and time
В	velocity and time
С	distance and time \checkmark
D	velocity and distance

 A horse gallops (يجري) a distance of 10 kilometers in 30 minutes. Its average speed is:

А	15 km/h
В	20 km/h√
С	30 km/h
D	40 km/h

12. A car maintains for 10 seconds a constant velocity of 100 km/h due east. During this interval its acceleration is:

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	А	$0 \text{ km/h}^2 \checkmark$
	В	1 km/h ²
D 100 km/h^2	С	10 km/h ²
	D	100 km/h ²

13. While an object near Earth's surface is in free fall, its ______ increases:

A	velocity ✓
В	acceleration
-	

- C mass
- D height
- 14. The speed at a specific moment is called _ speed:
- A average
- B instantaneous √
- C initial
- D final

15. Acceleration is the rate of change in:

- A force
- B distance
- C speed
- D velocity√

16. If the speed is constant, the acceleration must be:

- A constant B zero C negative D unknown√
- 17. A car moves along a straight road with constant acceleration. If its initial and final speeds are $v_i = 10 \text{ m/s}$, $v_f = 20 \text{ m/s}$, its average speed is:

А	12 m/s
В	15 m/s ✓
С	10 m/s
D	20 m/s

18. If an object in linear motion moves a distance of 20 m in 5 seconds, its average speed is:

А	4 m/s√
В	5 m/s
С	10 m/s
D	20 m/s

19. If an object is in linear motion, and its speed changes from 10 m/s to 20 m/s in 10 seconds, its acceleration is:

A	20 m/s ²
В	10 m/s ²
С	5 m/s^2
D	$1 \text{ m/s}^2 \checkmark$

- 20. If your average speed is 80 km/h on a 4-hour trip, the total distance you cover is:
- A 40 km
- B 80 km
- C 120 km
- D 320 km√

Chapter 2: Motion & Energy

21. If you travel 300 km in 4 hours, your average speed is:

А	50 km/h
В	75 km/h ✓
С	80 km/h
D	100 km/h

Free Fall

22. If air resistance on a falling rock can be neglected, we say that this rock is:

А	heavy
В	at terminal speed
С	in free fall√
D	light

23. If a stone drops in a free fall from the edge of a high cliff, its speed after 5 seconds is:

А	10 m/s
В	40 m/s
С	50 m/s√
D	100 m/s

24. If a stone drops in a free fall from the edge of a high cliff, the distance it covers after 4 seconds is:

А	40 m
В	80 m ✓
С	120 m
D	160 m

25. If an object in free fall has an initial speed of 10 m/s, its speed after 10 seconds is:

А	80 m/s
В	90 m/s
С	100 m/s
D	110 m/s

26. Neglecting air resistance, if a player throws a ball straight up with a speed of 30 m/s, the ball will reach its maximum height after:

A	6 seconds
В	5 seconds
С	4 seconds

- D 3 seconds√
- 27. If an object is in free fall, the distance it travels every seconds is:
- A the same as the previous (السابق) second В more than the previous second \checkmark

С less than the previous second

D undefined

- 28. If an object is in free fall, its speed every seconds is:
- A the same as the previous (السابق) second
- B more than the previous second \checkmark
- C less than the previous second
- D undefined

Newton's 1st Law of Motion; Inertia; Equilibrium

29. If no external forces act on a moving	- 1
79 If no external forces act on a moving	CONTRACT IT WITH
2. If no external forces act on a moving	

- continue moving at the same speed А
- B continue moving at the same velocity \checkmark
- С move slower and slower until it finally stops
- D make a sudden stop
- 30. If an object is in mechanical equilibrium, we can say that:
- A a nonzero net force acts on it B it has constant velocity \checkmark C it has small acceleration D it has large acceleration
- 31. Inertia means that:
- A an object at rest tries to remain at rest, and a moving object tries to stop
- B an object at rest tries to move, and a moving object tries to stop
- С an object at rest tries to move, and a moving object tries to keep moving
- D an object at rest tries to remain at rest, and a moving object tries to keep moving \checkmark
- 32. The SI unit of inertia is the:
- A kilogram
- B newton
- C ioule
- D none of these \checkmark
- 33. If two equal forces act on a moving cart in opposite directions, we can say about it that:
- A it has acceleration B it is in static equilibrium C it is in dynamic equilibrium \checkmark D nonzero net force acts on it
- 34. If two equal forces act on a stationary (ساكن) book in opposite directions, we can say about it that:
- it has acceleration Α
- it is in static equilibrium \checkmark

Chapter 2: Motion & Energy

- C it is in dynamic equilibrium
- D a nonzero net force acts on it
- 35. If you stand at rest on a pair of identical bathroom scales, the readings on the two scales will always be:

А	each	equal	to	your	weight	
---	------	-------	----	------	--------	--

- B each equal to half your weight \checkmark
- C each equal to double your weight
- D different from each other
- 36. A man weighing 800 N stands at rest on two bathroom scales so that his weight is distributed evenly between them. The reading on each scale is:

А	400 N ✓
В	200 N
С	1600 N
D	800 N

37. A 80-kg painter stands on a 20-kg painting staging (سقالة دهان) that hangs on two ropes. If the staging is at rest and both ropes have the same tension, the tension in each rope is:

А	200 N
В	500 N√
С	800 N
D	1000 N

Force; Support Force; Friction

38. The support force is on an object results from the ______ of atoms in the surface:

А	compression√
В	speed
С	acceleration
D	energy
39.	The support force on a 2-kg book lying on a level

39. The support force on a 2-kg book lying on a level table is:

B 2 N C 10 N D 20 N√	А	1 N
	В	2 N
D 20 N√	С	10 N
	D	20 N√

40. In the following, check the correct statement:

- A force is a vector, mass is a scalar \checkmark
- B force is a vector, weight is a scalar
- C mass is a vector, weight is a scalar

D force is a vector, mass is a vector

41. Two forces act on an object: $\vec{F}_1 = (6 \text{ N}, \text{ east}); \vec{F}_2 = (8 \text{ N}, \text{ west})$. The net force $(\Sigma \vec{F})$ on it is:

- A (14 N, east)
- B (14 N, west)
- C $(2 \text{ N, west}) \checkmark$
- D (-2 N, west)
- 42. Two forces act on an object: $\vec{F}_1 = (10 \text{ N}, \text{ up}); \vec{F}_2 = (10 \text{ N}, \text{ down})$. The net force $(\Sigma \vec{F})$ on it is:
- A (20 N, up)
- B (20 N, down)
- C (10 N, up)
- D zero√
- 43. Two forces act on a crate and the crate is in equilibrium. These two forces are:
- A (100 N, right), (100 N, left) \checkmark
- B (100 N, right), (50 N, left)
- C (50 N, right), (100 N, left)
- D (100 N, right), (100 N, right)
- 44. If the force of friction on a moving object is 10 N, the force needed to keep it at constant velocity is:

А	0 N
В	5 N
С	10 N√

- D more than 10 N
- 45. When an object falling through air stops gaining speed, we say that it has reached its ______ speed:
- A average
- B instantaneous
- C final
- D terminal√
- 46. Air drag depends on a falling object's:
- A size and speed√
- B size and density
- C density and speed
- D none of these

Mass; Weight

- 47. Mass is a measure of an object's:
- A inertia√
- B volume
- C density
- D speed

48. Mass is an object's quantity of:

A energy

- B matter√
- C dimensions
- D momentum

49. The SI unit for weight is the:

A	newton√
В	kilogram
С	gram
D	pound

50. Two identical barrels (برميل), one filled with oil and one with cotton, should have:

А	same mass and different inertia
---	---------------------------------

- B same inertia and different weight
- C same volume and different mass \checkmark
- D same weight and different density
- 51. If the Earth's gravitational pull is 6 times that of the Moon, an object taken to the Moon will have:
- A same mass and less weight√
- B same weight and less mass
- C same mass and same weight
- D less mass and less weight

Newton's 2nd Law

52. An object's acceleration is directly proportional to the:

А	net force√
В	average speed
С	mass
D	inertia

- 53. If an object's mass decreases while a constant force is applied to it, its acceleration:
- A decreases
- B increases√
- C remains constant
- D changes according to volume

54. If the net force acting on an object decreases, its acceleration:

- A decreases ✓ B increases
- C remains constant
- D changes direction
- 55. The net force on an 50-kg crate is 100 N, its acceleration is:
- A 0.5 m/s^2

- B 1 m/s^2
- C $2 \text{ m/s}^2 \checkmark$

D 5 m/s²

56. A 1-kg falling ball encounters 10 N of air resistance. The net force on the ball is:

А	0 N✓
В	4 N
С	6 N
D	10 N

Newton's 3rd Law

57. The number of forces involved (الداخلة) in an interaction between two objects is:

$\begin{array}{c c} B & 1 \\ \hline C & 2\checkmark \\ \hline D & 3 \\ \end{array}$	А	0
	В	1
D 3	С	2√
	D	3

- 58. A force is defined (تعريفها) as:
- A part of an interaction between two objects \checkmark
- B a push from an object on itself
- C a pull from an object on itself
- D a push and a pull on the same object
- 59. Newton's 3rd law states that, for two objects X and Y, whenever X exerts a force on Y, then:
- A Y exerts double that force on X
- B Y moves in the opposite direction
- C Y exerts half that force on X
- D Y exerts an equal but opposite force on $X\checkmark$
- 60. In an interaction between two objects, the action and reaction forces are:
- AperpendicularBin opposite directions√Cin the same directionDon the same object
- 61. When a man pushes on a wall with force F, the wall pushes back on him with force of magnitude:

$ \begin{array}{c} B \\ \hline F/2 \\ \hline C \\ \hline F \\ \hline \end{array} \\ \hline D \\ 2 \\ \hline \end{array} \\ \hline \end{array} $	А	zero
	В	F/2
D 2 F	С	F✓
	D	2 F

62. When a cannon shoots a cannonball with acceleration a_b , the cannon recoils ($(\mathfrak{L},\mathfrak{L})$) with acceleration a_c such that:

Chapter 2: Motion & Energy

А	$a_c = a_b$
В	a_c is much larger than a_b
С	a_c is much smaller than $a_b \checkmark$
D	$a_c = 0$

- 63. When a cannon shoots a cannonball with force F_b , the cannon recoils ($(\mathfrak{L},\mathfrak{L})$) with force F_c such that:
- A $F_c = F_b \checkmark$ B F_c is much larger than F_b
- C F_c is much smaller than F_b
- $D F_c = 0$
- 64. When a cannon shoots a cannonball, the cannon's recoil (ارتداد) is much slower than the cannonball because:

А	the force on the cannon is much less
В	the mass of the cannon is much greater \checkmark
С	the cannon's mass is more distributed (موزع)
D	there is more air resistance

65. When a man stretches a spring with a 100-N force (within its elasticity range), the spring pulls him back with:

А	0 N
В	50 N
С	100 N✓
D	200 N

Work; Energy

- 66. Work is produced only if there is:
- A force and motion \checkmark
- B force and elevation (ارتفاع)
- C force and time
- D time and elevation
- 67. Work is proportional to:
- A (force) and (1/distance) B (force) and (distance) \checkmark
- B(force) and (distance) \checkmark C(1/force) and (distance)
- D (force) and (distance)²
- D (force) and (distance)

68. The SI unit of work is:

А	newton
В	watt
С	joule√
D	ampere

69. A joule is equivalent to:

A N/m²

- B m/N
- C N/m
- D N.m√
- 70. A cart moves 10 m in the same direction as a 20-N force acting on it. The work done by this force is:
- A
 200 J√

 B
 2 J

 C
 0.5 J

 D
 20 J
- 71. A man does 2000-J work in pushing a crate a distance of 10 m on a frictionless floor. The force applied by the man is:

А	20 N	
В	200 N√	F
С	2000 N	
D	20000 N	

Power

72. An engine (محرك) can do 100,000-J work in 10 s. The power of this engine is:

A	1 MW
В	100 kW
С	1000 W
D	10 kW√

- 73. An engine (محرك) can do 75-kJ work in 10 s. The power of this engine in horsepower is:
- A
 10 hp√

 B
 1 hp

 C
 0.1 hp

 D
 100 hp
- 74. The SI unit of power is:
- A newton
- B watt√
- C joule
- D ampere
- 75. A watt is equivalent to:
- A kg.m³/s²
- **B** $kg^2.m^2/s^3$
- $\frac{c}{C}$ kg.m²/s³/
- D $kg^2.m^2/s$
- 76. Of the following quantities, the ones that have the same unit are:
- A work and energy \checkmark

В	work and power
С	energy and power
D	work and pressure

Mechanical Energy

77. Mechanical energy results from an object's:

- A position only B position and/or motion \checkmark
- C motion only
- D neither position nor motion

78. Mechanical energy consists of:

- A kinetic energy and power
- B potential energy and power

C potential and kinetic energy \checkmark

D power and work

Potential Energy

79. Of the following, the form of energy that is NOT potential is the energy of:

А	a moving car√
В	a stretched bow (قوس مشدود)
С	a compressed spring (زنبرك مضغوط)
D	water in a high reservoir (خزان)

80. Potential energy is the energy stored in an object because of its:

 A
 speed

 B
 position√

 C
 charge

 D
 mass

81. A 20-kg box rests on a 2-m high shelf. Its potential energy relative to the ground is:

A	100 J
В	200 J
С	400 J√
D	800 J

82. The mass of a box of 200-J potential energy when resting on a 2-m-high shelf is:

А	10 kg√
В	20 kg
С	40 kg
D	80 kg

83. If a 5-kg box sitting on a shelf of height (h) has 100-J potential energy relative to the ground, h equals:

- A
 1 m

 B
 2 m√

 C
 4 m

 D
 8 m
- 84. Three 5-kg rocks are raised to a height of 5 m, with Rock₁ raised with a rope, Rock₂ raised on a ramp (منحدر), and Rock₃ raised with an lift (مصعد). The rock that attains the most potential energy is:

А	Rock ₁
В	Rock ₂
С	Rock ₃
D	all the same√

Kinetic Energy

- 85. Kinetic energy is the energy stored in an object because of its:
- A motion√
- B position
- C charge
- D mass
- 86. The kinetic energy of a 1000-kg car traveling at a speed of 20 m/s is:
- A 50 kJ
- B 100 kJ
- C 200 kJ√
- D 400 kJ
- 87. The mass of a bicycle of 4000-J kinetic energy traveling at 10 m/s is:
- A 40 kg
- B 50 kg
- C 60 kg
- D 80 kg√
- 00 Kgv
- 88. The speed of a 40-kg bicycle of 1620-J kinetic energy is:
- A 9 m/s√
- B 3 m/s
- C 27 m/s
- D 90 m/s

89. If an object's speed doubles, its kinetic energy:

- A remains the same
- B doubles
- C triples
- D quadruples√

90. If an object's mass doubles while moving at a constant speed, its kinetic energy:

Α	remains the same
В	doubles√
С	triples
D	quadruples

91. The kinetic energy of a car traveling at 20 m/s is 500 kJ. If it travels at 40 m/s, its kinetic energy becomes:

А	500 kJ
В	1000 kJ
С	2000 kJ√
D	4000 kJ

92. The work done by the engine of a 1000-kg car to move it from rest to a speed of 20 m/s is:

А	50 kJ
В	100 kJ
С	200 kJ√
D	400 kJ

93. The force exerted by the engine of a 1000-kg car to move it from rest to a speed of 20 m/s within 100 m is:

А	1000 N
В	2000 N√
С	4000 N
D	5000 N

Conservation of Energy

94. The total energy of an object of mass (m), falling at height (h) with speed (v) can be written as:

А	$E = \frac{1}{2} mv^2 + 2 mgh$
В	$\mathbf{E} = \frac{1}{2} \mathbf{mv}^2 + \mathbf{mgh}\mathbf{\checkmark}$
С	$\mathbf{E} = \mathbf{m}\mathbf{v}^2 + \frac{1}{2}\mathbf{m}\mathbf{g}\mathbf{h}$
D	$E = \frac{1}{2} mv^2 + \frac{1}{2} mgh$

- A increases, decreases

- B decreases, decreases
- C decreases, increases√
- D increases, increases
- 96. The ram of pile-driver (مِذَكَ falls from a height of 20 m. Its speed just before touching ground is:
- A 2 m/s
- B 5 m/s
- $\frac{100}{C}$ C 10 m/s
- D 20 m/s√
- 97. A simple pendulum's bob has speed (v) at its lowest point (1); its highest point (3) has height (h).

If h = 20 cm, v equals:A2 m/s \checkmark B5 m/sC10 m/sD20 m/s

......

98. When a simple pendulum's bob of mass m = 0.5 kg is at its highest point (3), its height is h = 40 cm. Its kinetic energy at its lowest point (1) is:

A	0 1
В	2 J√
С	5 J
D	10 J

99. When a simple pendulum's bob of mass m = 0.5 kg is at its highest point (3), its height is h = 40 cm. Its kinetic energy at point (2) of height $\frac{1}{2}$ h is:

А	5 J
В	2 J
С	1 J√
D	0 J

100. When a simple pendulum's bob of mass m = 0.5 kg is at its highest point (3), its height is h = 40 cm. Its total energy at point (2) of height $\frac{1}{2}$ h is:

А	5 J
В	2 J✓
С	1 J
D	0 J