Chapter 3: Mass Relationships in Chemical Reactions Part 2

> Dr. Dalal Alezi dalezi@kau.edu.sa

> > 14/10/2018

Stoichiometry

Calculate the amounts of Reactants and Products using the mole ratios in the balanced equation

Stoichiometry

Calcium carbonate reacts with hydrochloric acid to form calcium chloride, carbon dioxide, and water.

 $CaCO_3 + 2 HCl \rightarrow CaCl_2 + CO_2 + H_2O$

In one reaction, 54.6 g of CO₂ is produced. What the mass of HCl was consumed?

 $M_{CO2} = 44 \text{ g/mol}$ $n = \frac{m}{M} = \frac{54.6}{44} = 1.24 \text{ mol}$

n HCl = 2.48 mol

m = 2.48 x 36.46 = 90.42 g

Silver nitrate reacts with barium chloride to form silver chloride and barium nitrate.

 $2 \text{ AgNO}_3 + \text{BaCl}_2 \rightarrow 2 \text{ AgCl} + \text{Ba}(\text{NO}_3)_2$

If 39.02 grams of barium chloride are reacted in an excess of silver nitrate, how many grams silver chloride are produced?

$$n (\text{BaCl}_2) = \frac{m}{M} = \frac{39.02}{208.23} = 0.187 \text{ mol}$$

n AgCl = 0.375 mol

m AgCl = 0.375 x 143.32 = 53.7 g

According to the equation below:

 $6NH_4CIO_4(s) + 10AI(s) \rightarrow 5AI_2O_3(s) + 3N_2(g) + 6HCI(g) + 9H_2O(g)$

What mass of aluminium should be mixed with 5.0 x 10³ kg of ammonium perchlorate?

$$n (\text{NH}_4\text{ClO}_4) = \frac{m}{M} = \frac{5 \times 10^6}{117.49} = 4.25 \times 10^4 \text{ mol}$$

n Al = 7×10^4 mol

Mass of Al = 7×10^4 x 26.98 = 1.91×10^6 g

Limiting Reagent

When Xenon difluoride (XeF2) dissolves in water, it slowly reacts with water to produce xenon gas, hydrogen fluoride and oxygen:

 $2 \text{XeF}_2 + 2 \text{H}_2\text{O} \rightarrow 2 \text{Xe} + 4 \text{HF} + \text{O}_2$

(a) Which is the limiting reagent when 1.00 g of xenon difluoride is dissolved in 50.0 g of water?(b) What mass of hydrogen fluoride can be produced and (c) how much of the excess reagent remains?

	XeF ₂	H₂O
Convert to mol	1/169.3= 0.0059 mol	50/18 = 2.78
Divide by coefficient	0.0059 / 2 = 0.0029	2.78/2 = 1.4
	0.0029 < 1.4 XeF ₂ is the limiting reagent H ₂ O is excess reagent	

Steps:

- 1. Convert reactants into moles
- 2. Divide by coefficient
- 3. Reactants with small

number (ratio) is limiting

(b) What mass of hydrogen fluoride can be produced

$$2 \text{XeF}_2 + 2 \text{H}_2\text{O} \rightarrow 2 \text{Xe} + 4 \text{HF} + \text{O}_2$$

n HF = 0.0118 mol

Mass of HF = 0.0118 x 20.01 = 0.236 g

(c) how much of the excess reagent remains?

grams of left = initial grams - reacted grams

 $n H_2O = 0.0059 mol$

Mass of H2O = 0.0059 x 18.02 = 0.1064 g

grams of left = 50 g - 0.1064 g = 49.9 g

In a synthesis of phosphorus trichloride, a chemist mixed 12.0 g P with 35.0 g Cl_2 ; she obtained 42.4 g of PCl₃. What is the % yield of PCl₃?

$$2P(s) + 3Cl_2(g) \rightarrow 2PCl_3(l)$$

Actual Yield is always less and normally given in the question Actual yield = 42.4 g

1- You need to determine limiting reagent

	Р	Cl
Convert to mol	12/30.97= 0.9687 mol	35/71 = 0.493 mol
Divide by coefficient	0.9687/2 = 0.484	0.493/3 = 0.164
	0.164 < 0.484 Cl ₂ is the limiting reagent	

2- Calculate the theoretical yield of PCI_3

 $2P(s) + 3Cl_2(g) \rightarrow 2PCl_3(l)$

	Moles of Cl2	Moles of PC13
من المعادلة الكيميائية	3	2
من المسألة بعد تحويلها إلى مول	0.493	Х

n PCl₃ = 0.3286 mol

Mass of PCI3 = 0.3286 x 137.33 = 45.13 g

3- % yield of PCI3

% Yield = $\frac{42.4}{54.13}$ x 100 = 93.9 %