King Abdul Aziz University
Faculty of science
Chemistry department

Model (A)

Chem. 110

Final exam of $1^{\text {st }}$ term 1432-1433H

Time: 120minutes

Student name:	
Student number	
Section	

Useful information
Speed of light, $\quad c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Planck's const.,

$$
h=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s}
$$

Avogadro's No.,
$N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Rydberg const. for H atom, $R_{H}=2.18 \times 10-18 \mathrm{~J}$
Gas constant,
$R=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

With the best wishes
General Chemistry Team work

Directions: For each of the following questions, choose the letter that best answers the question and place it on your answer sheet.
1.The diameter of a circuit is $59 \times 10^{5} \mathrm{~cm}$. What is this diameter when expressed in micrometers?
a) $59 \times 10^{11} \mu \mathrm{~m}$
b) $59 \times 10^{5} \mu \mathrm{~m}$
c) $59 \times 10^{9} \mu \mathrm{~m}$
d) $59 \times 10^{7} \mu \mathrm{~m}$
3.How many milliliters in 1.4381 L ?
a) 1438.1 mL
b) 14.38 mL
c) 143.81 mL
d) 14381.0 mL
3. Bromine is a red liquid at $25^{\circ} \mathrm{C}$. Its density is $3.12 \mathrm{~g} / \mathrm{cm}^{3}$. What is the volume of 46.5 g of liquid bromine?
a) $12.9 \mathrm{~cm}^{3}$
b) $14.9 \mathrm{~cm}^{3}$
c) $15.9 \mathrm{~cm}^{3}$
d) $17.9 \mathrm{~cm}^{3}$
4. Which of the following is a SI base unit?
a) gram
b) hour
c) meter
d) all of the above
5. Which of the following element is in the halogen group?
a) I
b) O
c) B
d) S
6. Which pair of Atomics would be most likely to form an ionic compound?
a) K and Cu
b) Na and Zn
c) K and Cl
d) Cs and Ca
7. Give the number of protons (p), electrons (e), and neutrons (n) in ${ }_{8}^{16} \mathrm{O}^{2-}$.
a) $8 \mathrm{p}, 10 \mathrm{n}, 8 \mathrm{e}$
b) $8 \mathrm{p}, 10 \mathrm{n}, 8 \mathrm{e}$
c) $\mathbf{8 p}, 8 \mathrm{n}, \mathbf{1 0} \mathrm{e}$
d) $10 \mathrm{p}, 8 \mathrm{n}, 8 \mathrm{e}$
8. What is the mass of 0.39 mol nickel (Ni) metal?
a) 23.01 g
b) 24.01 g
c) 24.51 g
d) 25.51 g
9. How many grams of Cl_{2} can be prepared from the reaction of 18.4 g of MnO_{2} with excess HCl according to the chemical equation?

$$
\mathrm{MnO}_{2}+4 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

a) 12.02 g
b) 11.02 g
c) 16.02 g
d) 15.02 g
10. Calculate the molarity of a solution of 6 g of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ in 508 mL of solution.
a) 1.24 M
b) 0.3 M
c) 0.26 M
d) 2.24 M
11. How many bonds around carbon atom in, $\mathrm{CO}_{3}{ }^{2-}$?
a) 1
b) 4
c) 2
d) 5
12. The formal charge on phosphorous atom in, PI_{3} ?
a) +2
b) +4
c) +5
d) 0
13. The type of bond in CaCl_{2} Compound can be classified as
a) Polar covalent bond
b) Ionic bond
c) Hydrogen bond
d) nonpolar Covalent bond
14. How many total valence electrons are present in, $\mathrm{H}_{3} \mathrm{PO}_{3}$?
a) 12
b) 32
c) 26
d) 30
15. The electron configuration $1 s^{2} 2 s^{2} 2 p^{6}$ applies to all of the following species except:
a) Ca^{2+}
b) Na^{+}
c) Ne
d) F^{-}
16. The correctly drawn Lewis formula for CBr 4 will have \qquad .
a) $\mathbf{4}$ single bonds and 24 nonbonding electrons
b) 4 single bonds and 20 nonbonding electrons
c) 4 single bonds and 18 nonbonding electrons
d) 4 single bonds and 16 nonbonding electrons
17. Which one of the following molecules would exhibit resonance?
a) O_{2}
b) $\mathrm{H}_{2} \mathrm{~S}$
c) CH_{4}
d) SO_{2}
18. Which of these molecules has an expanded of the octet rule?
a) NF_{3}
b) PH_{3}
c) Br_{2}
d) SF_{6}
19. If the initial pressure of a 2.00 L gas sample is 2.50 atm , what will the pressure be if the volume is changed to 6.00 L at constant temperature?
a) 0.600 atm
b) 1.50 atm
c) 0.833 atm
d) 3.75 atm

20 .Propane burns in air according to the equation: $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ What volume of CO_{2} would be formed if 4.00 L of propane burns, assuming that all of the gases are under the same conditions?
a) 12.0 L
b) 24.0 L
c) 3.00 L
d) 4.80 L
21. Select the correct equilibrium constant expression for the reaction:

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

a) $\mathrm{Keq}=\left[\mathrm{CH}_{4}\right]\left[\mathrm{O}_{2}\right]^{2} /\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}$
b) $\mathrm{Keq}=\left[\mathrm{CH}_{4}\right]\left[\mathrm{O}_{2}\right] /\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
c) $\mathrm{Keq}=\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right] /\left[\mathrm{CH}_{4}\right]\left[\mathrm{O}_{2}\right]$
d) $\mathrm{Keq}=\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2} /\left[\mathrm{CH}_{4}\right]\left[\mathrm{O}_{2}\right]^{2}$
22. Select the solution below that is the most basic.
a) $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-10} \mathrm{M}$
b) $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-6} \mathrm{M}$
c) $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-8} \mathrm{M}$
d) $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-4} \mathrm{M}$
23. Consider the following system at equilibrium:

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftarrows \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

What change will cause the equilibrium to shift to form more CO_{2} ?
a) add a catalyst
b) decrease $\left[\mathrm{H}_{2} \mathrm{O}\right]$
c) decrease the volume of the reaction vessel
d) decrease $\left[\mathrm{H}_{2}\right]$
24. Consider the following system at equilibrium:

$$
\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \quad \text { Exothermic }
$$

What change will be observed if the temperature of the reaction mixture at equilibrium were decreased?
a) The concentration of $\mathrm{C}_{2} \mathrm{H}_{6}$ will decrease.
b) The concentration of both $\mathrm{C}_{2} \mathrm{H}_{2}$ and H_{2} will increase.
c) There will be no change in the equilibrium concentrations.
d) The concentration of both $\mathrm{C}_{2} \mathrm{H}_{2}$ and H_{2} will decrease.
25. Calculate the pH of a solution that has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-6} \mathrm{M}$.
a) $\mathrm{pH}=1.00$
b) $\mathrm{pH}=14.00$
c) $\mathrm{pH}=7.00$
d) $\mathrm{pH}=6.00$
26. If the pH of a solution is 7 , the solution will be:
a) Acidic
b) Neutral
c) Alkaline
d) None of these
27. Fill in the blanks: 3.00 moles of oxygen gas $\left(\mathrm{O}_{2}\right)$ have a weight of $-\ldots------\mathrm{g}$, and occupy volume of \qquad L at STP.
a) $96.0 \mathrm{~g}, 1.00 \mathrm{~L}$
b) $64.0 \mathrm{~g}, 22.4 \mathrm{~L}$
c) $64.0 \mathrm{~g}, 3.00 \mathrm{~L}$
d) $96.0 \mathrm{~g}, 67.2 \mathrm{~L}$
28. The reaction in which increased pressure has no effect on the equilibrium reaction is
a) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})$
b) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightleftarrows \mathrm{CH}_{3} \mathrm{OH}(\ell)$
c) $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftarrows \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
d) $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftarrows \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
29. The equilibrium constant for the following reaction: $\mathrm{N} 2(\mathrm{~g})+3 \mathrm{H} 2(\mathrm{~g}) \quad 2 \mathrm{NH} 3(\mathrm{~g})$ is 70 at $350^{\circ} \mathrm{C}$. A system at equilibrium has $\left[\mathrm{N}_{2}\right]=0.100 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=0.200 \mathrm{M}$. What is the $\left[\mathrm{NH}_{3}\right]$?
a) 0.371
b) 0.195
c) 0.237
d) 0.302
30. Kp will be equal to Kc if \qquad .
a) $\Delta \mathrm{n}=0$
b) $\Delta \mathrm{n}=1$
c) $\quad \mathrm{RT}=0$
d) $\Delta \mathrm{n}=\infty$
31. The correct order of radius in the following is
a) $\mathrm{Cl}-<\mathrm{Cl}$
b) $\mathrm{O}^{-2}>\mathbf{O}$
c) $\mathrm{Fe}^{+2}>\mathrm{Fe}$
d) $\mathrm{Fe}^{+2}<\mathrm{Fe}^{+3}$
32. All the following compounds are aliphatic except? (D)
a) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
b) $\mathrm{CH}_{3}-\mathrm{CH}_{2}=\mathrm{CH}_{2}$
c) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}$
d)

33. Which of these elements has the greatest electronegativity?
a) ${ }_{51} \mathrm{Sb}$
b) 33 As
c) ${ }_{31} \mathrm{Ga}$
d) ${ }_{55} \mathrm{Cs}$
34. The cobalt(III) ion, Co^{3+}, has how many 3 d electrons?
a) 0
b) 7
c) 6
d) 5
35. Which one of these elements (period 4) is a transition element?
a) Br
b) As
c) Sc
d) Ca
36. The correct order in the first ionization energy is:
a) N $>$ O $>$ C $>$ Si
b) Si $>\mathrm{O}>\mathrm{N}>\mathrm{C}$
c) $\mathrm{O}>\mathrm{N}>\mathrm{C}>\mathrm{Si}$
d) C $>\mathrm{N}>\mathrm{O}>$ Si
37. The general formula of an alkane is
a) $\mathbf{C}_{\mathbf{n}} \mathbf{H}_{2 \mathbf{n}+2}$
b) $\mathrm{C}_{2 \mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$
c) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}$
d) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}-2}$
38. The functional group in this compound $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$ is
a) Ketone
b) Aldehyde
c) Amine
d) Ether
39. An amino acid is a compound that contains at least
a) One amino group and one amide group.
b) Two amino groups and one carboxylic acid group.
c) One hydroxyl group and one methyl group.
d) One carboxylic acid group and one amino group.
40. Which of these is the systematic name for the compound represented below?

a) 2,3-dibromopentane
b) 1,2-dibromopentane
c) 2,3-dibromopropane
d) 1,2-dibromopropane

$\begin{gathered} \hline \text { hydrogen } \\ 1 \\ \hline \end{gathered}$																		$\begin{gathered} \hline \text { helium } \\ \mathbf{2} \\ \text { He } \\ 4.0026 \\ \hline \end{gathered}$
${ }^{\text {lithium }}$	beryllium 4												$\begin{gathered} \hline \text { boron } \\ 5 \end{gathered}$	$\begin{aligned} & \text { carbon } \\ & 6 \end{aligned}$	$\begin{gathered} \text { nitrogen } \\ 7 \end{gathered}$	oxygen	$\begin{gathered} \text { fluorine } \\ 9 \end{gathered}$	neon 10
LI	Be												B	C	N	0	F	Ne
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180
sodium 11	$\begin{array}{\|c\|} \hline \text { magnesium } \\ 12 \end{array}$												aluminium	silicon 14	phosphorus 15	sulfur	chlorine 17	$\begin{gathered} \text { argon } \\ 18 \end{gathered}$
Na	Mg												AI	Si	P	S	CI	Ar
22.990	24.305												26.982	28.086	30.974	32.065	35.453	39.948
potassium	calcium 20		scandium	$\begin{aligned} & \text { titanium } \\ & 22 \end{aligned}$	vanadium 23	chromium 24	$\begin{array}{\|c} \hline \text { manganese } \\ 25 \end{array}$	$\begin{aligned} & \text { iron } \\ & 26 \end{aligned}$	cobalt 27	$\begin{gathered} \text { nickel } \\ 28 \end{gathered}$	$\begin{aligned} & \text { copper } \\ & 29 \end{aligned}$	$\begin{gathered} \text { zinc } \\ 30 \end{gathered}$	gallium 31	germanium 32	arsenic 33	$\begin{aligned} & \text { selenium } \\ & 34 \end{aligned}$	bromine 35	krypton 36
K	Ca		Sc	TI	V	Cr	Mn	Fe	CO	Ni	CU	Zn	Ga	Ge	AS	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
$\begin{aligned} & \text { rubidium } \\ & 37 \end{aligned}$	$\begin{aligned} & \text { strontium } \\ & 38 \end{aligned}$		yttrium 39	$\begin{gathered} \text { zirconium } \\ 40 \end{gathered}$	$\begin{gathered} \text { niobium } \\ \mathbf{4 1} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { molybdenum } \\ 42 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { technetium } \\ \mathbf{4 3} \end{array}$	ruthenium 44	rhodium	palladium 46	$\begin{aligned} & \text { silver } \\ & 47 \end{aligned}$	$\begin{gathered} \text { cadmium } \\ 48 \end{gathered}$	$\begin{gathered} \text { indium } \\ 49 \end{gathered}$	$\begin{aligned} & 2,01 \\ & 50 \\ & 50 \end{aligned}$	antimony 51	$\begin{gathered} \text { tellurium } \\ 52 \end{gathered}$	iodine 53	xenon 54
Rb	Sr		Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	\|	Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
$\begin{aligned} & \text { caesium } \\ & 55 \end{aligned}$	$\begin{aligned} & \text { barium } \\ & 56 \end{aligned}$	57-70	lutetium 71	$\begin{aligned} & \text { hafnium } \\ & 72 \end{aligned}$	$\begin{gathered} \hline \text { tantalum } \\ 73 \end{gathered}$	tungsten 74	$\begin{aligned} & \text { rhenium } \\ & 75 \end{aligned}$	osmium 76	${ }^{\text {iridium }} 7$	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
CS	Ba	*	LU	Hf	Ta	M	Re	OS	Ir	Pt	Au	Hg	T1	Pb	Bi	PO	At	Rn
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
$\begin{aligned} & \text { francium } \\ & 87 \end{aligned}$	radium	89-102	$\begin{gathered} \hline \text { lawrencium } \\ 103 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { rutherfordium } \\ 104 \end{array}$	$\begin{gathered} \hline \text { dubnium } \\ \mathbf{1 0 5} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { seaborgium } \\ 106 \end{array}$	$\begin{aligned} & \text { bohrium } \\ & 107 \end{aligned}$	$\begin{aligned} & \text { hassium } \\ & 108 \end{aligned}$	meitnerium 109	$\begin{array}{\|c\|} \hline \text { ununnilium } \\ \mathbf{1 1 0} \\ \hline \end{array}$	unununium	$\begin{aligned} & \text { ununbium } \\ & 112 \end{aligned}$		ununquadium 114				
Fr	Ra	* *	r	Rf	Db	Sg	Bh	HS	Mt	Uun	Uuu	Jub		Jud				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

* Lanthanide series		cerium 58 Ce	$\begin{gathered} \text { praseodymium } \\ 59 \\ \mathrm{Pr} \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { neodymium } \\ 60 \\ \mathbf{N d} \end{array} \end{gathered}$	promethium 61			gadolinium 64 Gd	terbium 65 Tb	dysprosium 66 Dy	holmium 67 Ho	$\begin{aligned} & \text { erbium } \\ & 68 \\ & \text { Er } \end{aligned}$	thulium 69	
* Actinide series	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	$\begin{gathered} \text { actinium } \\ 89 \end{gathered}$	$\begin{gathered} \text { thorium } \\ 90 \end{gathered}$	$\begin{gathered} \text { protactinium } \\ 91 \end{gathered}$	uranium 92	$\begin{aligned} & \text { neptunium } \\ & 93 \end{aligned}$	$\begin{gathered} \text { plutonium } \\ 94 \end{gathered}$	$\begin{gathered} \text { americium } \\ 95 \end{gathered}$	$\begin{gathered} \text { curium } \\ 96 \end{gathered}$	$\begin{aligned} & \text { berkelium } \\ & 97 \end{aligned}$	$\begin{gathered} \text { californium } \\ 98 \end{gathered}$	$\begin{aligned} & \text { einsteinium } \\ & 99 \\ & \quad 9 \end{aligned}$	$\begin{gathered} \text { fermium } \\ 100 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { mendelevium } \\ 101 \end{array}$	$\begin{gathered} 102 \\ \hline \text { nobelium } \\ \hline \end{gathered}$
	Ac	Th	Pa	U	No	Pu	Am	Cm	BK	Cf	ES	FM	Md	NO
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

