

وزارة التريـيـةوالتعليهم

$$
\begin{aligned}
& \text { mall } \\
& \text { لتـريس كتاب }
\end{aligned}
$$

حقوق الطبع محفوظة لوزارة التربيية والتعليم

قرّرٌتْ اللجنة العليا للمنناهج في اجتماعها رقم (

$$
\begin{aligned}
& \text { الطبعة الأولى التجريبية } \\
& \text { لr... }
\end{aligned}
$$

التعلم المدرسي ، وفهم الكتاب المدرسي كونه يرتبط به .

وتدريب طلابك على كيفية التعلم من الكتاب المدرسي ومن غيره من المصادر التعليمية. .

 المعلمين فقط، بل سيتعداه إلى تدريب المعلمين، وإعادة تأهيلهم ، وتحـد يث أنماط التوجـيه والتقويع
 الدراسية؛ فنتوجه إليهم بـجزيل الشكر لما بذلوه من عمل في سبيل تجسيد أهد المداف المنهج وتطلعاته؛ خدمةُ وإسهاماً في بناء مستقبل أفضل لأبنائنا وبناتنا . والله من ورأَ القصد ،،

أ.د. عبدالسلام محمدالجوفي

وزير التربية والتعليم

رئيس اللجنة العليا للمناهج
. ـالثانر الثانوي القسم العلمي، فإننا نرى

 من التخطيط.

 وأحسن الأساليب لتخطيط وتقديم حصص فاعلة ومثيرة ومحفزة للتعلم . .

 نسأل الله أن نكون قد وفقنا لإصابة أهدافنا .
والله من وراء القصد

المؤلفون

17

أهددالم تدربس الرباونيات في الرهلة، الثانوية:

A

> : لي .

- r

7

 .

. 11

Ir

-
 . r.

$$
1 \text { - النترُف على النظلام ذي العمليتين وخواصه (المقل) م }
$$

منحنى كل منهـما.
人 - التعرف على مفاهيم الدائرة في المستوى الإِحداثي .

ني الفـراغ.
. 11 - برهنة بعض المبرهنات الهندسية الفضائية

 1 1 - التعرف على مفهوم الاشتقاق واستنتاج بعض قوانينه.

$$
17 \text { - حساب مشُققات بعض الدوال. . }
$$

IV التعرف على مفاهيم الاتصال ومبرهنات الاتصال واستخدامها في حل بعض المسائل على الدوالـ الدالـ.

$$
19 \text { 1 } 19 \text { - التعرف على على الاحتمال مفاهم الإرتباط ، والانِحدار، وحساب معامل الارتباط. }
$$

Y r

 !

عد	عنوان الرحدة	i
17	المالمدا	1
ri	الدوال المفيقين	r
11	المتتاليات	r
r	اللوغاريتمات	!
ri		-
ri	المصنونات والمد	7
Yq	الهـندسة الإحـداثينّ	\checkmark
ri	الهندسة الفضـائبة	\wedge
ro	، حساب المثلثات	9
rr	الإجصاء والإحتدالات	1.
den rrr	إجمالي عدد الـح	

تابع / الرموز المعتصدة في كتب الرياضيات لمرحلتي التعايبم الالساسي والثانوي

منمجية أعداد الكتابت الهدرسي وكيفية استخذامهـ

عند إعداد كتب الرياضيات للـرحـلة الثانوية، رأى المؤلفرن تبتي منهجبية تواكب استراتيجية مناهج هذه

 r - r عرض المادة من خلال مداخل وأساليب تدريسية تتفق مع تسلسل المادة ومع النمو العقلي للطالب ، وقد قل

 تساعده على استخـدام أسلوبي التفكير الأستقرائي والاستنتاجي ، والطريقتين التحليليلية والتر كيبيـة مكا

 "جانب عرض بعض جماليات المادة هنا وهناك .

ثلاث خطوات هي :

أ) تحديد خصصائصها المشتشر كة ، وهذه عملية تصنيف وتَريد .
ب) توظيف وتطبيق هذه الخصطائص على عناصر أخرى تمثل المفهوم ، وهذه عملية تجّسيد وعملية تعميم. جـ) فصل عناصر المفهوم عن غيرها لمفهوم آخر ، وهذه عْملية تصنيف وتمييز ، بل عملية تعميق، ومن ذلك تمت العناية بصياغة تعاريف المفاهيم .

7

 ج-) إنجاز العمل المطلوب بشار بـلم

ب) () حديد المعطيات .

 ذلك إعادة الصيا

د) تنفيذ المل : ويتم فيه تنفيذ خطة الملل ، ورضع الـطرات في تسلسل منطقي مع تفسيرها وتعليلها ،

ــلول أخرى أفضل أو أزضح ، وفي نهاية هذه المططوة تتم صياغة جملة المبراب . .

وانطلاقأ ما سبق فإننا نرى أن يكون استخدام الكتاب المدرسي وفقأ لما يلي :

 المنهاج ينعكس انعكاسأ تامأُ في الكتاب ، وبذلك فالكتاب المدرسي خير معين للمدرس في تخطيط

 تساعده في تطوير أساليبه. التدريسية وتعمت لدين يـه المادة العلمية ، وقد أوردنا عدداً منها في الدليل في
نهاية كل وحدة.

ثانيأ : يعتبر الكتاب المصدر الرئيس للتعلم ، وقد شكل بحيث يساعد الطالب على التعلم والدراسة الذاتية ، ولذا على المدرس أن يراعي الاستعانة بالكتاب المدرسي في كل حصة دراسية ، فيعطي الطلبة تكليفا كليأ ليس

المدرسين دون إدراك .

ثالثـأ : يقدَمْ الكتاب المدرسي للطالب نماذج مثـاليـة للحل ، والتي على الطالب أن يتبعهها ويقلدها ولذا ليس
 ما غمض في الكتاب وأن يقدم أمثلة أخرى مشابهـة يختارها من تمارين الكتاب أو من كتاب التمارين أو يعدها بنفسه .
 يمكن أن تغطى المادة التعليمية وأمثلتها وتمارينها ، ويحدد ضمن ذلك الك الواجبات الصفية والمنزلية بما يخدم
أهداف الحصة الدراسية .

هذا كل ما يتعلق بالكتاب المدرسي منهجيةً واستخدامأ وقد قدم بشُكل مختصر وعلى المدرس التوسع في ذلك من المراجع المناسبة ،كما ذكرنا في أولاُ .

هنمجية إعداه كتاب التحهارين وكيفية استخدامهـ

للكتب المدرسبة . وتد روعي عند إعداد كتاب التمار ين أن يحتوى على ما يلي :

 اذهان الطلبة . r - الختبار الو حـدة، وهو متناغم مع اختبار الوحدة الذي في الدلِل ، حيث أن اختبار الدليل قد وضع وفقًأ
لاهداف الرحـاد .

واستنادا لماسبق ، نتد خطط ان يستخدم كتاب التمارين على النحو التالي : أرلا : يمكن الاكتفاء بتمـار ين ومسائل الكتاب المدرسي بعد كل بند ، ويستعان بما في كتاب التمارين فتط
وتت الضرورة ، أو لإعداد بعض الاختبارات أو خطوات التقويم نهاية كل بند .

ثانيأ : نهاية كل وهـدة يكلَف الطلبة بحل عدد كاف من التمارين العامة والمسائل ، يقَوم المدرس باختـيارها بدقت، وتكن مراجععتها أو مناقشتها في وقت الخعص ، أوحسبما يراه المدرس مناسباً. ثالثأ : يطلب المدرس من الطلبة حل اختبار الوحدة كواجب منزلي ، وقبل يومين أو ثلاث من الاختبار الذي سيتم إجرازو . وبالتالي يتيح فرحة كافية للطلبة للمراجعة والاستفسار عن أي صعوبات تواجههمـ . ومن خـلال هذا نـرى أن الـهـدف الأسـاسي لكتـاب التـمار بن هو تـــكـين الطلبة من الـمـادة وتثبـبـتها وتعمينها لدبهـم .

منهجية إبداد دليل المعلم وكيفية استخدامهـ

لقد تبنى مولفو أدلة المعلمِن لكتب الرياضيات للمرحلة الـانوية منهججية تنبع من منهجية تأليف الكتب نفسهـا وتتواكب مع استراتيجـية مناهج هنه المرحلة؛ ولهـذا جـاءت الأدلة مكملة للكتب وتشُرحـها وتساعـا المدر في تخطيط وتنفيـذ الـصص الدراسية، وتراعي خصوصية المواضيع ولا تلغي إبداع المدرس في سلو كـد
 التالية في أدلة كتب الرياضيات للمرحلة الثانوية والتي يجـب الأخنذ بها عند استخلدام تلك الـك الأدلة الة :

وبهـذا وضع تشكـيل كل وحدة على النحو التالي :

وثيقة المناهج لكل وحدة .
 وتعـميـمات الوحـدة، وبعض الأخطاء الشائعـة إذا دعت الضـرورة لذكرها وسـبل عـلاجهـا ، وبعض التوجيهات التدريسية العامة ، وكل ذلك يشكل خلفية علمية للمدرس فقط ، ولا يجوز التطرق له
مع الطلبة في الـصص الدراسية .

د) أهداف لكل درس، مع ذكر العدد المقترح للحصص ، كما تم التعرض لتنفيذ الدرس بتحديد عنوأن عام لكل حصة دراسية، ثم جاء تقويع الدرس ، وبعد ذلك إرشادات وإجابات إلـات التمارين والمسائل . هـ) كما سبق الإشارة ، يعطى اختبار الوحدة الذي في كتاب التمارين كواجب منزلي، وتهيئة لاختبار
 ذلك النموذج وبما يحقق الأهداف المرسومة ، ومن خلال تحليل إِجابات الطلبة يمكـن أن تتم معالجة
الأخطاء والأهداف التي لم تتحقق بششكل أو آخر .
r - كل ما قدم للمـدرس في الأدلة ما هو إلا مقتـرحات ، ولكنـها مواكبة للمادة المعدة في الكتـاب المدرسي الما وكتاب التمارين ، ولهذا على المدرس أن يكيف هذه المقترحات ضمن الواقع التدريسي وفق ظروف الصف، وبما يتيح له الإبداع دون الخروج عن أهداف المنهاج ـ ولهذا نوصي المدرس بأن يقرأ الدليل قراءةمتمعنة ، ثم يخطط كل حصة على حدة بأهدافها وخطواتها التمهلدية والمادة التعليمية التي ربما يعد لها أمثلة جديدة من
 r - على المدر أن يعمل بشُكل مستمر على تثبيت وتطوير المعارف والمهارات السابقة ، وأن يخطط عملا صفباً كلما أمكن ، وخاصة في الحصص المددة للتمار ين ، كما يفضل التقويع في نهاية كل دزس حتتى يطمنن إلى أن أهدافه تتحقق أولاُ بأول . § - أن يستخدم الكتاب المدرسي استخدامأ فاعلاُ كما قد وضح ذلك في منهجية إعداد الكتب المدرسية وكيفية استخدامها ، وأن يوظفه بشُكل يومي ، ولا يقتصر استخدامه ـ كما تعود كثير من المدرسين - على تحديل
الواجبات والتمارين .

ه - مراعاة الفروق الفردية أمر هام ، يجب أن بعطيه المدرس عناية كبيرة ، وذلك بالأخذ بعين الاعتبار بعض

 الطلبة المتوسطون بشتئ من تحقيق الذات. وقد يتطلب هذا الأمر من المدرس أن يعد بنفسه أمثلته وتمارينه،
 مثلا إعداد التمار ين العلاجبة لضعفاء الطلبة والتمارين التدر ينبية للمتوسطين منهم والتمارين والمـانـائل الإثرائية للمتقدمين
 يكلف المدرس طلابه بالمزيد من العمل خار ج الصف ، مثل إنجاز بعض التدريبات أو تنفيذ بعض الألمار بأنشطة ، وبما يتيح لهم ربطأ مستمرأ بالمادة مع مراعاة تطبيقاتها الهامة في المياة .
 أتيحت الفرصة ، أن يعيد ما تعلمه الطلبة في مرحلة التعليم الأساسي من استراتيجية حل المسألألة ، وأن
يربطها دائمأ بالبراهين المعروضة والمطلوب القيام بها .

1 - ينصح المدرس بأن يوجه طلبتـد إلى تنفيـذ حلول التمار ين والمسائل بقوالب وأشكال نموذجية من حيث
 وبعد عرض المنهجـيات الثلاث لإعداد الكتاب المدرسي وكتاب التمارين ودليل المعلم ، فإن على المدرس تتبع هذه المنهجيـات في عملية التدر يس حصة حصة وبندأ بندأ ، ويـحرص على تطبيقها في الــمارسة الفعلية للتدر يس .

الحــقـة والحـقـلـ

جلدول توزيع الـصص

عدد المصص	الموضوغ	رقّم البند
r	مراجعة وتهـيد	1-1
-	الملمد	$r-1$
\&	المقل	$r-1$
r	حقل الأعداد المقيقية	≤-1
r	اختبار الوحادة	$0-1$
17	إجمالي عدد المصص	

أهداف الوحدة

يتوقَّ من الطالب بعد الانتهاء من دراسة هذ. الوحدة أن يكون قادراُ على أن : 1 - يعرّف النظام الرياضـي ذا العمليتين .
r - بشینف النظلام الرياضني ذا العمليتين إلى (حـقة / حقل) . r - يتحقتَ من أن نظامأ رياضياً يمثل حلقة أو حقل . ؛ - يحـدّ الحلقَة التامة من حلقات معطاة .

ه - يبرهن أن كل شقل هو حلقَّ تامة .

- V

1 - يستخدم خواح حقل الأعداد الـقيقية في حل معادلات ومتراجحات الدرجة الأولى بمتغير واحد .

-

تا

"T Tr الهـلبتين ח (
 (و رأن المـلبن \cap تتوزع على الهـلبة

بعض المبرهنات المتعلقة بالخلقة 1
 البرهان :
着 $\neq 1$, $01=1$

هلاحظة

$$
\Leftarrow, \neq 1, \quad \rightarrow 01=-01-1
$$

$$
\rightarrow=ب \Leftarrow \neq 1, \quad 10 \rightarrow=100-ب
$$

البرهان :
, , .

لــــة تاريـخـية

 الثى حل مسادلات ذات در ان أعلى .

الزمر بيرنعبا الحالي .

والمـنـوعات المتحبلة ب

التـركبب الجبربة.

بضبجن عناصر أغـرعات المداخلة في نر كببها .

(X , も) ‘ (+ ال
($x_{6}+九 \tau$) ، الخلفات :
($x_{6}+$ ، $) ~ ، ~\left(x_{6}+\imath_{1}\right)$) : (

 0 - عندحل المعادلات في الْنظّمة الرياضية المُتلفة ، يراعى ما يلي :

آخر بحسب طبيعة عناحر س

- الثـاني أن بكون للـــعـادلة ا O س * ب =

التمارين ((r-1) في كتاب الطالب .

 الأنظمة بالطريقة المطرلة ويكتنى بعند مسدودهس المعادلات تحل كل منها في أكثر من نظام ، ومن المهـم

هنا استخذام خواح الأنظمة الرياضبة في تفسبر خطوات الحل .
V

للمتباينات في تفسبر (توخيَح) مجسوعة الحل .

\& $\uparrow 1=\Leftarrow \Leftarrow$ $0=\bumpeq \Leftarrow$
ب) للسبب المسابت نفسس فبان المعادلة

$$
: \odot{ }^{\prime}(8)=v
$$

) ($)$ ، $r=\sim \Leftarrow$
(تَققت من ذلل)
(\& * r) o (r*r) $\neq($ (0 or) * r (
$\varepsilon-=1-0-r=0-\star r=(1 r-\varepsilon+r) \star r=(\varepsilon 0 r) * r$,

$\|-=r \cdot-0+\varepsilon=00!=$

لا فينلا في النظام (ص,

$$
\begin{equation*}
r \neq 1, r=1 \odot r \quad r=r \odot r \tag{0}
\end{equation*}
$$

 الصـف المقابل للننصر 1، كما في الشنكل الآتي (الذي يمثل جزءأ من جدول العدلية *)

نهذا بعني أن للمعادلة

* 1

حلين في الزهرة (
أساسبة للزمرة تنص على أن للمعادلة 1 * 1 (1 (
(ب) $\quad q=9 * q$ (i [V]
()
هـ

 فـن

($(1-1) \quad u *=$ $1-$

(U*) $0 \rightarrow=\rightarrow 0 \rightarrow$
($40 \rightarrow$) ($00 \rightarrow$) $=$
$1=1 * 1=$
$((0-1) ل$ ب
$\left(\rightarrow \mathrm{O}_{s}\right) *(\rightarrow 0 \rightarrow)=$
$\rightarrow * 1=$
$\rightarrow=$

وهكذا يُكن إبحاد كل من العناصر الداخلة في جدول (1-7) حيث
ب
(ب) * (ب)
ب * \rightarrow
s = 0 s
 ()

رأنها تنوزع على العملبة + :

r - العملبة

$$
1 ب+1=\Delta 1
$$

(لان + تبديلية)
=
$1 \Delta ب=$

TI

تنفيذ حصص البند

-

إرشادات وإجابات : تمارين (1 (

() .

- باقي تسـة ب 1 بلى

10 ب 10

المفاهـهـ رالمـطلحات

Operation		
Binary operation		
Operational System		'النظام ذا العّلبات
Cmmutative operation		عكلبة ندبلية
Associative operation		عـلبة
Distributive operation		عملبة توزبيعبي
Identity element		عنصر هسابد
Symmetric		نظر
Table		جرو
Group		ز
Ring		,
Integral	.	تا
Identity		مابد
Field		-
Inequality		بتراجحi

المرابع

I - بحبى عبيد سعيد هانم الطبار ، مرجز نارين الريانيانبات .

المـتِّمسة

لـحة تاريـخية

 هغلتة مشل •

 مبادين المباة .
رمنذ الترن التاسع عشُ أسهـم علماء الرياضبات مئل : ديدكند ، فبرستراس ، ريمان وغيرهم في وضع أسس
لنظرية الدوال الـتينبن .

$\alpha(1+\sim)(1-\sim) \leqslant \cdot \alpha 1$ ，据

$[1-\infty \infty-\mid \cup] \infty$ ，1］＝ ｜1－،11－＝－

$.[1-, 1]=. ت . f$

（（

اذا كان لدبينا الدالد د ：الدالد こヲ $\quad \forall$（

كانت ذ عددأ زوجيأ رتكـون فردية إذا كانت ن عددأ فرديأ

ر - دالة اللدرجة الثالة :

- مداها ح
- ليست زرجية ولبــت فردية

والتمئيل البباني التالي يرضّح هذه الدالة :

ه - دالة اللدرجن الثانبة "ا

- بوا كان المـبْز (

اوٌ : :إذا كان ا> .

V - V

人 - عند تدريس دالة الصحبح يُنبُ الطلاب إلى ما يانتي :
i)) دالة الصحبح ليست زوجين رليست فردية

$1+$ +

9- 9 - عند رسم دالة الصحيح بجب الاهتمام بالفترات الماصن بكل
 - تُديد مجـوعة التعريف تبل رسمها

- الدالة المطية د() = أل

 أوجد محـوعن نعربن الدالة د (

$\left|\frac{r}{r}\right| /=[r]$

1v،と-1/て:
-:
[r،r-]:

] ∞ r $\mathrm{r}-\left[\begin{array}{ll}\text { [1.] }\end{array}\right.$
$111 /$ ع [ir]

] ∞, r] [17]
τ [10]
c [19]
(q-،q) / ट $[r]$

] ∞ ‘ $\frac{1}{\uparrow}$]:
τ [V$]$
|rar-||c [q]
] ∞, 1 [11]
(1.)/] 10 (1] [1r]
] ∞ rr] [10]
τ [iv]
(1)-1/ च (1 [r-]
] ∞, !
] ∞ ، $:$ [

$$
\begin{aligned}
& \text { 1Y- ، }
\end{aligned}
$$

$$
\begin{aligned}
& \text {] }
\end{aligned}
$$

$$
\begin{aligned}
& \text { [} \\
& \text {] [ت ت ، r }
\end{aligned}
$$

$$
\begin{aligned}
& \tau=\text { = } \tau
\end{aligned}
$$

الــــراجـع

4) Manaj Dubey R s Tomer, Question Bank in Mathematics for class IX, second edition,Published by Tata Mc Graw- Hill publishing Company Limited New Delhi 99
5) Allan Bellman,Sadie Chavis Bragg, Suzanne
H. Chapin- Theodore J.Gardella Bettye C. Hall - Edward Manfre; Advanced Algebra, Prentice Hall - Needhan Massachusetts upper Saddle River, New Jersey.
6) Senior Secondary School Mathematics, Part A , for Class 12
Printed at B B Printers, Panta - $800006,2000$.

المـتّدمـة

 حنيفي، وني هنه الوحدة مندرس نوعأ خاصأ من الدوال المفيفية تسنُى المتتالبات.

 المتتالية متتالبة هندسبة.
وتلعب المتتاليات دورأ هاماً ورئبسبأ في مواضبع عدة في الرياضيات وخاصة لـل كثير من العلاتات الريانيـة

بخضع للتغير بوحدات ثابتة أو بمعلات نـات ابتة .

رالننع الثاني ويدخل ضبـن المتنالبات الهندسية .
وتشــمل هذه الوحدة بلالة مواخـيع هي:
الاول : المتناليات بصورة عامة وفيبا نتعرفِ على النقاط التالية:

- "نعريف المتتالية.
- المتتالبات المنتهية وغبر المنتهية والتزايدية والتناتصبة والثابتة.
- التمثيل البياني للمتتالية .

الهاني : المتتالبات الحسابية وتتعرف فيبا على ما يأتي :

- تعريف المتتالية الحسابية .
- تانون الحد العام للمتتالية الخسابيبة .
- خواح المتتالبة الحسابية.
- هجمرع (ن) حدأ للدتنالية الحسابية.
- تطبينات:

الثالث : المتنالبات الهندسية رتتعرف فيبا على ما باتي :

- تعريف المتتالبة الهندسية .
- تانبن الحد العأم للمتتالبة الهندسية.
- خواح المتتالية الهندسية.
- هجـوع (ن) حدأ للمتتالبة الهندسية.
- تطبيقات.
r

(1):

 $6(1-2) 2 \div+2$

(£) \ldots \qquad ، 17 ، \& \& ,
(0) \ldots
\qquad rT ، IT © 0 , ،rA ، 10 ، 7
(1) \ldots
 هندسي حـث (T) تد النــتـت من بنبة كالتالي:

.مثلثأ وهذا واضح من الشْكل.

لبذا بإن :

 - $1+0$) $(1+\geqslant) \frac{1}{r}=1 \int_{1+2}^{1+2}={ }_{1}+\frac{\Delta}{2}$ $(1+2)=(r+2+2)(1+2) \frac{1}{r}=1+\frac{\Delta}{2}=\Delta_{2}$

$$
5(1-2) 2 \div
$$

.4.

(() + + ($)$ (i

نسil
r ك $=7 \times 0=\left(1+\frac{1}{r}\right) \frac{1}{r}$ ك
 و
ركذلك تانون الجموع مهـ

()

$\frac{(2 r+1)(1+2) 2}{1}=(2+2) \quad\left(\frac{1}{1}+\frac{2}{r}\right)=$

$r(1+2) 2=0 \underbrace{2}_{i=1} r+4 \underbrace{2}_{i=0}(\sim$
وهناك كثبر من هذه المُططابقات وأمثالها وردت ني كتبه مع برهانها.

والهندسبة .

, كان تناه

$$
\begin{array}{r}
\frac{\left(1+2^{r}\right)(1+2) 2}{7}= \\
\frac{(1+2)^{r} 2}{1}=
\end{array}
$$

$$
\begin{aligned}
& \text { B ا }
\end{aligned}
$$

r
r-r
(i
$r+\nu r={ }_{2}{ }^{2}$,
r+ د
نضّع :

ثم نضّ
فتكون المتنالية هي: (
جـ) ببضعن حدود مـ المتنالبة:
وذلن بكتابة قيم المدود الاونى للدتنالبة. فالمتالبة التي سدها النوني (العام) ir ، 11 ، 9 ، C ، 0 ، 0 r 0 =
, وذلك بكتابة
 للدالة في الجال حيث يشترط في المتتالبة أن بكون الجال طث أو بجموعة جزنبة منها على الصبرة المبا |

 بازدياد تبهن د سميت متقالبة متناقشة (تناقصبة) .

حلبن علمب

> r| اب- المتنالبات المسـابية: (العددبة) .

〈 ب) المد المام في المتنالبة المسابية >
$2(1-2)+{ }_{1} C={ }_{2}$
حبث 2 ر رتبة المد.
ج
 $\left({ }_{2} \tau+, \tau\right) \frac{\partial}{r}={ }_{2} \tau_{0}$
وإذا كانت المتنالية حساببة ، حدها الاول ح, و, وأساسها د فإن مجـيع د ح حدا الاولى منها هو:
 هـ خر خواح المتتالبة الحسابية:

- في المتـالبة الحساببة بكون مجـرع المدين الواتعين على بعدين متساويبن من الطرفبن ثابتأ وبساوي

هجهوع المدبن الأول والاخبر أي أن : إذا كانت لدينا المتتالبة المسابية:
 نإِ
$0+r=r{ }^{2}$

$0-0 \times 1$ -	1-1-1-1-1-
	$r+10+1+r$

\qquad

تضر عالد المتبغي

 $(1 \times 9)+(Y \times Y)+(Y \times 0)+(\$ \times r)+(0 \times 1)$
; $(s-2)^{q}+(r-2) v+(r-2) 0+(1-2) r+(2) \times 1$

 () ([$]$

 $((1-\sqrt{2}+2-4 r+\ddots r-2$ r) $\underset{\substack{2}}{2}=$

;حينـن بكرن

المد العام للمتنالبة المساببة , ومحسع و المدود الاولى منا - ()

$$
[, \tau+, \tau] \quad \frac{2}{r}=
$$

 العام كـا أن ثانون المد العام =
 - ني المتنالبات المساببة المتنالية التزايدبة بكرن الماسبا

 ,

ملاحظة: إذا نتجت و= عددْ صحيح + كسر فانِ لا يوجد حد تيمنه صفر في هذه المالة ربكون
رأول حذ سالب هو ح

$$
2 r+\tau=\uparrow ، 2+, \tau=J ،, \tau=\rfloor
$$

 إذا علم عدد حدود المتنالية أمكن إيجاد مجموعها ، وإذا علم مجمرع المتبالية أمكن إيجاد عدد حدودها
 ${ }^{1-2}, \tau={ }_{2}, \tau:$,

$$
\begin{aligned}
& \left.\begin{array}{ll}
1<|\gamma| & \frac{\left(\tau^{-}, \tau\right)}{1-\lambda} \\
1>|\nu| & \frac{\left(\gamma, \tau^{-} \tau\right)}{\jmath^{-1}}
\end{array} \right\rvert\,=
\end{aligned}
$$

لمتـــــــــــــــــات

－بكتب حدو2 متنالبة علم حدها العام．
－بعرّق المنتالبة المنتهبة وغبر المنتهبة ريميزها
－بعرْت المتنالبة التزابدبية والثناتصبة ريمّزها ．
－يعرْت المتسلسـلة．

تنفيذ حصص البند

الحعس الإولى：المتتالبة رحذهـا الصام．
الحـة الثانية：انتواع المتالكات．
الحسة الثالث：التـثيل البياني للمتـالية．
الحـصة الرابعة：تُارين صنية
التقري

（）بين أبُّا من الدوال التالبة تَثل متتالية：

إرشادات وإجابات : تمارين (

$$
\begin{aligned}
& \text { (} \rightarrow \text { (} \rightarrow \text {) } \\
& \text { هـ }
\end{aligned}
$$

- إنا أعضبت

$$
\begin{aligned}
& \text { (.). } \\
& \text { シミ" 天 : : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { () }
\end{aligned}
$$

$$
\begin{aligned}
& \text { • }
\end{aligned}
$$

$$
\begin{aligned}
& \text { • }
\end{aligned}
$$

（r）$\ldots(د \boldsymbol{r}+$, （ $) 1 r=$

$$
\frac{\pi}{v_{1}}-\frac{3+c}{2 \pi+c}=\frac{\pi}{2 n}
$$

$0=, こ, r=2 \therefore(r) \cdot(1)$ ل～$\quad \therefore(r) \ldots \cdot=20-c^{r} \therefore$〈．．．｜l｜، ، ، ، 0 〉＞

$$
\therefore \tau=-2
$$

（r）$\ldots \quad r i=, 10+, C \therefore \quad$＇$[210+, C]=[2 r+, C r] \frac{r 1}{r} \therefore$

$V=2 \therefore \quad 0=(1-2)!+1)-(1-2) 1+1 \wedge-\therefore$

$$
r!=0 \quad \therefore
$$

$$
\left[(1-\dot{v} r-\wedge r] \frac{\partial}{r}=[(1-\dot{r}) r+7] \vartheta\right.
$$

$\Delta=2 \quad \therefore$

نلا بد أن همسوع الحدود ابتداء من المد التاسع إلى الـد المامس والعشنرين＝

$$
(, \tau+, \tau) \frac{\partial}{r}=\rightarrow \quad \therefore
$$

（1）．．．0．＝2q＋，Cr \therefore（ $\left.2 q+C^{r}\right) \frac{1}{r}=r o \cdot[1!]$
（r）$\ldots r=219+C^{r} \therefore\left(219+, Z^{r}\right) \frac{r \cdot}{r}=\{0+r 0$ ．

$$
\begin{aligned}
& \text { rr،... ، 0 ، r , 1 ، } 1-\quad \text { r-(}
\end{aligned}
$$

$$
\begin{aligned}
& r \mid A!=(2 r+, C)(2+, C), C \therefore r 4=(2 r+, C)+(2+, C)+, C(C) \\
& 2-1 r=, C \Leftarrow r q=2 r+, C^{r} \therefore \\
& \text { rist = (د+ir) (Ir)(2-Ir) } \therefore \\
& 1 \pm=2 \Leftarrow 1=2 \therefore \\
& 1:=, C ; \quad i r=, C .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (r) } \ldots .2(1-כ)+, \tau=r q=, \tau \quad(1) \ldots 2+, \tau=9=, C \text { (2 } \\
& (r) \cdots(r+, \tau)=\left(, \sigma^{+}, \tau\right) \quad \frac{\partial}{r}=-r_{j}
\end{aligned}
$$

$$
\begin{aligned}
& \text { الحدود التي تبلها: }
\end{aligned}
$$

$$
\frac{1}{r r}="\left(\frac{1}{r}\right) \times I!={ }_{n} \tau \cdot \frac{1}{r}={ }^{2}\left(\frac{1}{r}\right) \times I\left\{={ }^{v}{ }^{2} \tau={ }_{C} \tau(i \quad[r]\right.
$$

-

$$
\begin{gathered}
V \cdot r=r, r, ~ \\
r V=\frac{r}{r}=\frac{r \cdot r}{r}=r
\end{gathered}
$$

$$
r=\tau ; r=f \therefore
$$

$$
\begin{aligned}
Y & =0 \\
\frac{Y}{r Y} & =r
\end{aligned}
$$

$$
\begin{aligned}
& \text { رشـادات وإجابات : تمارين (r-r) }
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\cdots, \frac{\pi V}{T}, \frac{1}{r} \text {, } \frac{1}{r V}, 1, r V, r\right\rangle\langle\rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \text { r }
\end{aligned}
$$

$$
\begin{aligned}
& r=\frac{\ldots}{\cdots}=\text {, }\langle\ldots, \text {, } \ldots, r \ldots, \ldots, 0 \cdot\rangle[r!]
\end{aligned}
$$

$$
\begin{aligned}
& { }^{2}\left(\frac{1}{r}-\right)={ }_{2} \tau^{\prime}{ }^{[}[\mathrm{r}]
\end{aligned}
$$

$$
\begin{aligned}
& \text { rr ، } 17 \text { : } 1 \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ("- " } \text { (} \mathrm{i} \text { [} 1 \leqslant]
\end{aligned}
$$

$$
\begin{aligned}
& \text { المتتالبة هي: } 1 \text { ا〉 }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{r}{r}=, \tau \therefore, ~ \tau^{+}+r=, \tau^{+}, \tau=, \rightarrow n=\frac{r}{r}, r=, \tau=, \rightarrow \therefore \\
& r \tau^{+} \frac{r}{r}+r=r \tau^{+}, \tau^{+}, \tau=, r=\frac{r r}{\lambda}
\end{aligned}
$$

الـــرابـع

\qquad

 يلبي ترضيح لبنود هنـه الوحـناة :

 اللرغار يتمية ورسم بيانها Y ب اللوغار يتمات والدالة اللوغاريتمية : رفيه تسلسل الموضرعات الرئيمسية في هذه الوحـذة ، وهي :
ـ اللوغاريتمات .

r - توانين اللوغاريتمات
؟ - الثلرغاريتم المعتاد (العشُري) : :

 اللوغار يتمات، وباستخدام الآلة الحاسبة .

 اللوغاريتم: والعدد المتابل) باستخالدام الآلة الماسبة 1 - التبسيط باسنخدام اللوغاريتمات : ونعني بالتبسبط هنا استخامدام قوانين وخصائص اللوغار يتمات في حل

 لـدى استبعاب الدارسين غختوى الوحـدة .

 حساببة مطرلة .

 اللوغاريتمات في حل التمار بن والمسائل المسابية المطرلة والمركبة

الأخطاء الشـانعة

والصحيع : لورس
§ - كتابة تانون تحويل حاصل الضرب إلى هحموع في اللوغاريتمات مئل :
 رالصحبح هو : لو (س . ص) =لو س +لوص

توجيهات طر ائقية عامة

 r - توضيح العلاقة بين الأساس واللوغاريتمات والعالاق بين الدالة الأسْية والدلة اللوغاريتـية

خلفية علمية

لـ (س. ص) = لر س+ لر ص •

كسا كُند أن (س)

لو

لـ,

$1, j p+1, j \nu=1,2+1,2-r$
$p+j=(1) p+(1) j=1, \int p+1, j u-r$

$\cdot(p+j)=1, f(p+j)={ }^{2+1} 1, j=(i x \mid)_{1}, j$

$$
\begin{aligned}
& \text {.,r...O = .,.r..or : الحل : } \\
& { }^{r}-1 . X r, \ldots 0=
\end{aligned}
$$

$$
\begin{aligned}
& (r-)+r, \cdots 0, J=
\end{aligned}
$$

طبعاً نوجد لو r, . مـ المدول سطر • وعمود الصفر ثم نضيف فروتـ ه

العدد المقابل للكسر الموجب .
 r, r!
نبحث في جد.رل الأعناد المفابلة عن صف ؛ ؟ ب, . في عـرد

(حبث تُشُول إلى عدد صحبح سالب , كسر مرجب))؛

> . ا- بيبب التاكبد على أهرين :

الأول : إن الأساس عشُرة في اللوغاريتم المعتاد تد سهُّل لنا إيجاد كوغاريتم أينّ عدد مرجب للاساس عشُرة .

 |ا- عند تطبيق توانيّن اللوغاريتم في حل المسائل ، يجب أن نضّع المقدار المطلوب إيجاد لوغاريتمه مساويأ س ؛ تم تم نـبت القانون :

$$
\begin{aligned}
& \text { V ا النأكبد على أن القانون [}
\end{aligned}
$$

$$
\begin{aligned}
& \text { توى العدد عشنرة. } \\
& \text { مثال : احسببل }
\end{aligned}
$$

$$
\begin{aligned}
& \text { i. } x_{0, \Sigma r r}=0 \leqslant r, r \\
& \text { (} 1 \cdot \times 0,0 \text {, } \\
& \text { '1. }, \\
& r+. e, t r r, y= \\
& \text {, لو }
\end{aligned}
$$

$$
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline r y & \mu & 1 & r & \frac{3}{3} & \frac{r 9}{40} & \frac{1 r 9}{1 r 0} & m \\
\hline r & r & 1 & \cdot & 1- & r- & r- & 0 \\
\hline
\end{array}
$$

الدي يثٔل الدالة ص= لد, (ـ -1 1)

$$
\begin{aligned}
& \text { 11 } \mathrm{Zr}^{\mathrm{J}} \Leftarrow \\
& r==^{\circ}\left(1+{ }^{*} \sim\right) \Leftarrow \frac{1}{r_{0}}=\cdots \neq
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=r!-r+i \Leftarrow \\
=\left(r+r()^{2}\right)
\end{array} \\
& \text { •=(T+'ル) (! (~) } \Leftarrow \\
& r \pm=\sim \Leftarrow \cdot=\{-\mathcal{N} \Leftarrow
\end{aligned}
$$

$$
\begin{aligned}
& 1+\stackrel{\rightharpoonup}{\circ}=\Leftarrow \Leftarrow
\end{aligned}
$$

$$
1 . \times 1,7: 50=175,50 \Leftarrow
$$

' $1 ., J+1,7 \leq r 0, J=17!, r 0, J \Leftarrow$
'i. $ر+1,7 \leq r 0 g=$
$r+1,7 \leq, \int=$

-,r109 = 1, T: $5=$
$r, r 10 q=\quad, r+, r 109=17!, r 0 \mathrm{~J}=$

$\left[{ }^{\frac{1}{7}}(\right.$ เ!q) $\times V A], \frac{1}{7}=$
${ }^{\frac{1}{r}}(7 \leq q), \frac{1}{q}+v \wedge, ~ ل \frac{1}{7}=$

$$
1 \leqslant q, \frac{1}{1 N}+v \wedge, ~ \frac{1}{7}=
$$

r,Alrr = 7
(r,A1rr) $\frac{1}{1 \lambda}+(1,9 r 90) \frac{1}{7}=\overline{\overline{7!9} \text { VVAV }}, \mathrm{J} \Leftarrow$
., $£$ V90 $_{0}=$
$(r-)+\cdot, V r \cdot \Lambda=(\bar{r} \cdot, \mathrm{Vr} \cdot \wedge)=$) C (l [r]

من المدول نوجد سطر 0؛ وعمرد

والذي بدوره سرف يضرب X العدد المقابل للحصرل على الإجابة .

$\cdots, \ldots 0=\stackrel{\cdots}{n, \ldots, y} \rightarrow(\mathrm{r}]$
[r] [r
نـجددأنـن
[؛ []) إذا كانت لو
Sheft ومن الآلتة الماسبة نخنُط

> رهنالٌ ظبعاً x تدل على العدد المطط

انـ أـ نهو العدد المقابل المطلوب إيجاده

$$
1 .=\left(1+{ }^{-}-s\right) r(\rightarrow[0]
$$

$$
r_{V} ل=\sim \Leftarrow r=\breve{v} \Leftarrow \cdot=(r-\check{v})(r-v) \Leftarrow
$$

$$
r_{r} J=\dot{v} \Leftarrow r=r_{v}, i
$$

IIT

النمايات والاتتصال والاشتقاق

جدول توزيع الحصص

عده المصص	اللوضرع	رتم البند
r		1-0
-	نهاية الدوال المثيقبة	r-0
¢	الالتصال	r-0
r	مدل تغبر الدالة	¢ - 0
-		$0-0$
r		ワ-0
7		v -0
r	اختبار الوحدة	人-0
r	الجموع	

أهداف الوحدة
بترنّع من الطالب بعد دراسة الوحدة أن بكون نادرأعلى ان :

$\infty \leftarrow 0$, r - r - بعرتِ نهابة الدالة المقيقية عند نتطة وعند اللانهاية. § - بحسب نهاية الدالة عند نتطة وعند اللانهاية. ه - يطّق خراص النهابات ني حل المسائل . I - بعرْف منهوم الاتصال عند نتطة، وعلى فترة. V - - يطنّت خواص الاتصال ني حل المسائل . ^ ی- يعرت منهوم تنير الدالة جبريأ وهندسباً. 1 - 1 - بعرتْ منهوم المثتُنة جبريأ رهنديان.
 1ا- بحل سسائل تطبيقية باستخدام تراعد الاشثنفاق
المفاهيم والمصطلحات

Graph Index (exponent)	
Inverse	-
Logarithmic function	
Natural Logarithin	الدالة اللوغارينبة
Natural base (e)	لوغاريتم طبيبي
Exponeutial function	
Base	-

 Newton (مآ:1 ITr)

 $\int\left(\frac{1}{\square}\right.$ (心)

 Varition

 () التكامل لاتص الزائدي والمعادلات التناضلبة البِرية متميزأ عن غبره بصلابتث في البرهان لنظريته الخاصة بالدورال

رحسابلتنغير

 نهاية التن التاسع عشر ، علمأ بان أساسبات الالعداد المتبيبية لم تنل أيُ تطرير إلا من تبل ، ديدكند ، كانترر ،
\qquad

 بصرور عامن إذا كانت إ共
منتالبة لنباية المدود بالصق,

${ }^{4} 1 .\left\langle 2 \Leftrightarrow{ }^{4},>\frac{1}{2} \Leftarrow{ }^{4} 1 \cdot\right\rangle\left|\cdot-\frac{3(1-)}{2}\right| \Leftarrow 3>\left|j-\frac{{ }^{2}(1-)}{2}\right|$
 ت
 ر

 $J={ }_{2} \tau \underset{\infty \leftarrow 2}{ }$

المتتالية متباعدة نحو ه ، ويُعبر عنها رمزياً بالصورة: نجا

 الحـورد (1 + 1

خلفية علمية

 بنتمي البلبا العدد 1 جوار للعدد ا.

تباعدية) اعتمادأ على الخد العام (الحن النوني) ،
فإذا كانت
ني
بنال عنبا بأنها مثنتالية متناتصة ، ولا بِكن إيجاد نهاية للمتنالية ما لم تكن تقاربيه. نـئل : لتكن :

وتأتي حالة عدم النعيين لنهابة دالذ كثبرة المدود ، عندما تسـاوي حغرأ، ما يشبر إلى أن (س-1) عامل من عوامل كثيرة الـدود ، عندئن بكـن إيجاد بتبة العوامل من خلال تسمة كثيرة المدود على العامل (س-1) ,الاستفادة من هذه الماصية عندها تكون نتيجة التعوبض المباشر في بسط الدالة الكسرية ومتامها

$$
\frac{\infty}{\infty} \text {; } \frac{\text { in }}{\text { صi }}=
$$

 1 = 1

$$
(1) \nu=(v)>L_{T \leftarrow-}-r
$$

ذلك بما يسهـل تناول مغهوم الاشتنات للدوال الحتيقين عند نتطة، أو على فترة في هذا الجزء من الوحدة .

$$
\begin{aligned}
& \text { وفي الشنكل (ب) (}
\end{aligned}
$$

－رمز المثتالبة＞
－ع ع ـ

وعندما س \leftarrow

－تزايد الدالة إلى ما لانهاية ：نـّهـاء

$$
\infty-=(\omega) \geq \text { ن }
$$

－
حقانتق وتعميمات
$J=$

 －إذا كان ل $J V=\overline{(س) 2} \underset{1 \leftarrow ふ ゙}{ }$ •
 $\frac{1}{v} L_{\infty-\leftarrow}^{L}=i, v=\frac{1}{v} \underset{\infty}{i} L_{\infty}^{i}$
－
：نأن

 $\tau=$＝
「) والة التطابق: ناعدنـا د(س) = ~
نوابت من الدرجه ،

$$
\tau \ni 1 \times \ldots r_{-2} ،_{1-2}{ }_{1}
$$

$$
\text { ' }{ }^{+} \tau \leftarrow \text { مناها }
$$

الرموز والمصطلحات بحترى اليحدة

］

－عدم وضرح الفرق بين منهوم نهابة الدالة رتبمتبا．
 －إذا كانت نـّ

 رالمقام غير موجودتّبن في الاصل －عدم إدراكا الطالب لطببعة الصلة الوئبتة بين الانصال والاشيتقاق للدوال عند نقطة معبنة ، ومدى صحن عكس

هذه العلاتة
توجيهات طر ائقية عامة
 الستخدام التـئيل الهندسي على خط الأعداد ، خاصة لـلل المتتالبات المتقاربة التي تد لا تظهـر بوضوح بالصيغة الجبرية، ذلك تْبدأ لدراسة الموار كفترة مفتوحة من جهتيه اليبنى والبسرى．

الهندسبة لتوضيح عملية اتتراب النباية من عدد معين.
 ه－التاكيد عند حسـاب نه

يمّن ويسارالعدد（1）
1－عند عرض خواص النهايات ينبغي نتّيم أمثلة تطبيقبة عليها للاستقراء． マ－تدريب الطلاب على الـكمَ بوجود النهابة عند نتطة من عدمه مكجرد النظر إلى منحنى الدالة، فإذا كان المنحنى متحصلا عند هذه النعطة فالنهاية موجودة ، مع العلم أن إيجاد نهاية دالة لا بعتمد على تعريف الدالة عند هذه النتفة

ـ الدالة الثنابنة منصلن على أي منرة مشلنة في محالها．

 دالنة متحـلة على هذه النفترة．

- إذا كان
-

（ル）$\pm($ に）

－\neq（ル）

$$
\begin{aligned}
& \text { - إعادة نعرين دالة لثكرن متصلة عند نتطة }
\end{aligned}
$$

- نعيين معدل التغير لدالن حنيقبة.
- دراسة تابلبة الدالة للاشثنـات
- نعيين مشتقة دالة باستخدار تعريف النهابة للمشيتقة.
- نعيين مشتقفة دالة باستخداه الثواعد الأساسبن للاششتقان. .
- حساب فيمة المشتفة عند نقطة وعلى فترة.

$$
\begin{aligned}
& \text { - نعيين مشنتفة الجْمـوع الجبري لعدة دوال. }
\end{aligned}
$$

> - المتخدام تواعد الاشتفات في تطببقات رياضبة وفبزيائبي.
> تنمية أساليب التفكير من خلال :
(منتهية ، غير منتهبة))

- اتباع الأسلرب الأستقرائي في إيجاد قيمة النهايات.
- درامة العمليات البمبرية على النهايات.
- دراسن سلوك الدوال الجبرية عندما يتزايل متغيرها أو يتناتص نحو اللانهاين.
- التعامل مع حالات عدم التعيبن للنهابات.
- ربط منهوم نهاية الدالة عند نتطة مع قيمة الدالة عند هذه النتطة في درامة الاتصال .
- ربط مغهوم المنتالبة مع منهر نهاية الدالة عند ننطة في دراسة النهايات.
- ربط الصررة الهندسية لمنحنى الدالة بالمنهوم البـري للاتصال .
- ربط مغهوم المشتقن عند نتطة رعلى فنرة بمنهوم النهاية والاتشال عند نلك النقطة أو الفترة.
- التعرن" على منهوم المنتنتة عند نقطة وعلى فنرة وiهمبيته في النعامل مع التطبيقات الهندسبة والجبرية

人- تبل التشروع في دراسة نهابة، الدالن على المعلم الناكد من مدى اسنبعاب الطلاب ، لمعاني ودلالة الرمرز $\infty-\infty$ ، ${ }^{-1}$ ، 1 ، 3 ، δ, $\infty \pm$, \leftarrow 9- التاكبد على أن المبارة: نُّرّا

$$
. \infty \leftarrow v \operatorname{ji}^{i}
$$

بعتـد اعتـبادأ كببرأ على مفهرم النهابة .

זا

$$
\text { (1) } 2=(\text {) })=\frac{\square}{1 \leftarrow}
$$

مهارات وخرارزميات

- الستخندام خراح النبابات في إيجاد نبابة الدوال جبرباً.

- إيجاد: نٌ
- إيجاد: نّْت الدالتدتن، أو التحليل رالاختحـار للدتادير.
- درامة اتصال حالة عند نتطة في خوء المشر: - تعيين نتاط الأتصـال لدالة باستخذام الملاحظة المباثشرة لمنحنى الدالة.
بثذبذب محدود بجرار النثطة r بعبُرٌ عنة رمزبأ بالصبرة :

$$
r=\left(\frac{(1-)}{2}+r\right) \underset{\infty \leftarrow j}{ }
$$

(بـ) متباعدة .

$$
\begin{aligned}
& \text {... وبر }
\end{aligned}
$$

$$
\begin{aligned}
& \text { اح } \\
& \text { 3> }\left|r-\frac{{ }^{2}(1-)}{2}+r\right| \Leftarrow r=\left(^{2}\left(\frac{(1-)}{2}+r\right) \underset{\infty \leftarrow 0}{\underset{\sim}{c}}\right. \\
& \begin{array}{r}
\left.\frac{1}{3}\langle | \ni|\Leftarrow 3\rangle\left|\frac{1}{2}\right| \Leftarrow{ }_{3}>\left.\right|^{3} \frac{(1-)}{3} \right\rvert\, \Leftarrow \\
\left.\frac{1-}{3}\right\rangle \supset>\frac{1}{3} \Leftarrow
\end{array}
\end{aligned}
$$

$$
\text { . } \frac{1+y^{r}}{r+\partial^{r}} \underbrace{}_{\infty \leftarrow j}
$$

|إرشـادات وإجابات : تمارين (0 - (1)

$$
r=\frac{\cdot+\cdot+r}{1}=\frac{\left(\frac{1}{2}\right):+\left(\frac{1}{2}\right) r+r}{1} \underset{\leftarrow}{\leftarrow}
$$

$$
949<0 ، \cdot, \ldots 1=3[0]
$$

[1] بالطربنغ نفسبا المنبعة في حل النـربن [r] .

$$
\text { 1-= = } \quad \therefore \quad \text {, } \quad \text { (}) \text { منصلن عند }
$$

] [
وكي متصلن لممبع تبم س وبالتالي متصلة عند س = صفرأ

- ينعر" منغوم تغنير الدالة. - يحسب قبمة متغغير الدالة.
- ينعرتْ مغهوم متوسط تغير الدالة - يتعرتّ معاني ; - يوجد متوسط تنيرالدالة - يوجد معل تغير الدالة.
- بحل مسائل تطبيقبة فبزبائبة.
تنفيذ حصص البندب
الحصة الإولى: منهوم مسذل تنغر الدالة ومنهوم متوسط النغير هندمبأ وجبرياً.

الـحستان الثانية والثالثة : تّار ين حفية
(ال-قر
يتم التنور بنائيأ ، وفي نهاية الحصة الثالثة يُعطى التمرين التالي كخطرة تتورم اوجد دالة التغير رمتوسط النغير عند س =

[r،r- r-

.

(1) \ldots
؛ الدـانة منــلن على النترة] -

$$
\cdot r<1 \forall, r+1=(1) \jmath
$$

(${ }^{r}$) \ldots
$r<1 \forall r+1=(ル)$, $\underbrace{L}_{1 \leftarrow \Omega}$

الندالن منـصلن

$$
\begin{aligned}
& \text { (2 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { r= ولذلك نبحث وجود المثـنة للذالة عندما س }
\end{aligned}
$$

$$
\begin{aligned}
& r=\text { = ني تابلة للانشتاق عند } \\
& \text { ز) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { وبالثالي معادلة المهاى عند الننطة (. ، -1) هي : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ومبل العمودي عند الننطن س= . ه: (1) }
\end{aligned}
$$

معادلة العمودي عند الننطة (-1 ، ؛) هي :صـ :

$$
\begin{aligned}
& \text { بالتعريض في الدالذ عند ما س = - } 1 \text { ، نحصل على ص = } 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { وأن ميل العمودي عند الننطة س= -ا هو } \\
& 1-=\mu \Leftarrow \cdot=1+\mu \Leftarrow \frac{1}{\cdot}=\frac{1-\mu}{1+J}
\end{aligned}
$$

المشتقة عند نقطة ، المشتقة على فترة

(14xivi)

تنفيذ حصص البند
بننذ هذا البند في نلات حصص على النحر الثالي :

 الحصة الثالثة : تّاربن حفبة .
(ال-

إرشادات وإجابات : تمارين (0 -

$$
\frac{\frac{r-w r+i v}{r+w+i v}-\frac{[r-(z+w) r+i(z+w)]}{[r+(z+w) r+r(z+w)]}}{2}
$$

.

ربعن التبسبط نحـصل على :
:

- (2 (

وبعد التبــبـل نحعل على :

(س) 2 \because

(r)...

. الدالة د (س) تابلة للاشنـناق على الفنرة] - ه ، ه

. الدالة د (س) تابلة للاشتعاق على الفترة] - ه ، r r r

$$
\begin{aligned}
& \frac{1}{0+-r^{r}}= \\
& \text { [}
\end{aligned}
$$

$$
\begin{align*}
& \frac{\left(\frac{1}{(1+心)}-\frac{1}{[1+(2+\cdots)]}\right)}{د} \tag{r}\\
& \underset{\leftarrow}{4}=(\boldsymbol{H}
\end{align*}
$$

$$
\begin{aligned}
& \text { (1) } \ldots
\end{aligned}
$$

$$
\begin{aligned}
& r=(1)^{\prime} \text { د } \therefore
\end{aligned}
$$

عدد	الــ,	رتم البند
r	المحفرنات	1-1
r	- بعض المصفرفات الماصن	$r-7$
r	-	$r-1$
\&	ضرب المصفونات والحملبات علبها	¢ - 7
r	الحددات	- - 7
r	المكوس الضربي للمصنونات	7-7
r	بعض التطبيفات على المصفوفات والغددات	$\mathrm{v}-\mathrm{r}$
Y	الختبار الوحدا	人-7
$r 1$	المهr	

أهداف الرحدة
بترنُ من الطالب بعد الانتهاء من تدربس هذه الوحدة أن بكون نادرأ على أن : ا- بعرْ المحنونة وبحندّ يُكلها ونوعها.
r- يجمع المحنونات، ويطرحها.
r- بنعرن خواح جهع المصنونات.
!- يضرب محنونة في عدد حنيني وبضرب محسنونتين. ع- ينعر"ن خراح ضرب المحنوفات، والمشنونات المربعة.
چ-بعرْ المددات وبتعرق خراحـا.
У- بيجد المعكوس الختربي للدقنونات.

Absolute Value
Average Rate of change
Average Velocity
Continuity
Continuity on an Interval
Derivative
D ifferentiation
The Derevative of a function
Differentiable function
Differentiable Rules
Equation of the Tangent
Equation of the Normal
First Derivative
Gradient function
Instantaneous Velocity
Instantaneous Rate of change
Left- Hand limit
Right- Hand limit
Limit
Product Rule of Differentiation
Point
Quotient Rule of Differentiation
Slope of Secant or Gradient of the Chord
Slope of Tangent or Gradient of the Tangent

$$
\begin{aligned}
& \text { الـرابع }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ع عـL }
\end{aligned}
$$

1 - Ellis, R. and Gulick. D. (1990), calculas with Analytic Geometry. 4ad.
2 -Stanly, G. (1984), Calculas, 3 ed. Academic Press, Inc. Florida, USA.

بـ $\left[\begin{array}{ccc}r & 0 & r \\ 1 & \cdot & \vdots-\end{array}\right]=1$

 العـود الثاني من؟

 $\left[\begin{array}{l}(r \times r)+(0 \times 0)+(r \times r) \ldots \\ (1 \times r)+(. \times 0)+(\$-X r)\end{array}\right]=$ ٪

$$
\left[\begin{array}{ccc}
r & \hat{r} & r \\
-1 & r & 1
\end{array}\right]=\approx=\therefore
$$

 , -

 بندلّة محددات مـر الرتبة الثالثة رهكذا (انظر كتاب الطالب)

لمتـنتاربنية

居
 المـن

共
,

ــ

$$
\text { يحددة دصنرنة المعاملات } \Delta \text {. }
$$

 . Δ. Δ.
هـ) نوجه Δ ع زهي الغددة الني نحصل علبها بوضع الثوابت في الطرف الأيسر بدلأ من هماملات ع في
هحددة مصفونة المعاملات ها نـم نوجد تيم المنغيرات من العلاقات الآتية :
$\frac{\varepsilon \Delta}{\Delta}=\varepsilon \quad, \frac{\rho \Delta}{\Delta}=\rho \quad, \quad \frac{-\Delta}{\Delta}=v$
وإذا كانت رإذا كانت
i i) إِا كانت ب) إذا كانت
وفي هذه الحالت نكون المسنتيمات متطابقة.

تو جيهات طرائقية عامة
ا - يؤكد المدرس على مفهومي المصفوفات والمحددات.
 r r- بئكد على رمز العنحر ا \& - الإهنمام بأنواع المصفوفات الشئهيرة التي قدمت في الكتاب المدرسي وكذلك شـكل المصفوفة. o - ئزكد على جمع وطرح المصفونات . والشُرط اللازم في العملبة . 1 - بئكد على ضرب مصنونة في عدد حفيني، وكذلل على الشنرط اللازم لماصل ضرب مصنفونين.
V - ا يركز على المصنونة المربعن وطرت حساب محددنها.
. ا- يؤكد على الحطوات لإيجاد مسكوس مشنونة من الرتبة الثانية وكذللك من الرتبة الثالثة .
11- يؤكد على خطرات حل معادلات خطبة ني ثلاث متغيرات على الآكثر .
T IT بكثر من التمارين والمسائل الصفبة واللا حغنية لتعزيز ما درس للطالب .
A - يزكد على خواح الحددات وسهولة حساب المحـدة

المنردة متسـاربة .

i) نوحـد مهددة المـنرنة

-
()

i) ن نكنب المعادلات ني صرزة مصـن,
ب) نرجن مسكر

- -

ب) نـس

- بعرت الـقع,

-

-
-
تنفـذ حصـص البـد

ال

إرشـادات وإجابات : ثمارين (8-1)
$\left[\begin{array}{cccc}1 . . & v & 0 & 0 \\ \therefore \vdots & 1 . & \cdot & 0 \\ A \cdot & \cdot & i v & v \\ \cdot & \lambda & 0 & \cdots\end{array}\right]==$
",
-
A. . . . IT. . Vo :

$$
\begin{aligned}
& \text { جميرطرح المنرونات }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - بذكر شـرط جـي مصفوفنين وطر حهـا }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - يطرح عصفونة من مصفرنة أخرى . } \\
& \text { - بسـتنتع أن جمع المصغونات عملبة إبدالبة ، نَّميعية. } \\
& \begin{array}{r}
\text { - بوجد النظبر المجي لمصفونة. }
\end{array} \\
& \text { بنفذ هذا البند في ثلاث حصص على النحر التالي : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ال- } \\
& \text { بتم التقويم بنائياً ، وفي نهاية المصة الثالثة يُعطى التمرين التالي كخفلوة تقوى : } \\
& \begin{array}{l}
{\left[\begin{array}{ccc}
\vdots & r- & 1 \\
\frac{1}{r} & r-\frac{1}{r}-
\end{array}\right]-\left[\begin{array}{ccc}
r- & r & \cdot \\
r & \varepsilon & r
\end{array}\right](i} \\
\cdot\left[\begin{array}{l}
r-1,0- \\
,,!-r, 1-
\end{array}\right]+\left[\begin{array}{ll}
r, s- & r, 0 \\
9,1 & \varepsilon
\end{array}\right]
\end{array} \\
& \text { إرشادات وإجابات : مَارين (Y- } \\
& {\left[\begin{array}{ccc}
0 & r & 1 \\
1- & v_{-} & \cdot \\
0 & 1- & i-
\end{array}\right](ب)\left[\begin{array}{lll}
0 & 1- & 1- \\
0- & r & \cdot
\end{array}\right] \quad \text { (i }[1]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{c}
1- \\
0 \\
\varepsilon
\end{array}\right]\left(j,\left[\begin{array}{ll}
1 & 0 \\
9 & v
\end{array}\right]\left(, \quad\left[\begin{array}{ccc}
\rightarrow r & -- & r \\
, r & \Delta s & .
\end{array}\right](0\right.\right.}
\end{aligned}
$$

إرشادات وإجابات : ثماربن (Y-Y)

r X Y r
؛ X 1 (\rightarrow

 ,$+\Delta r=, r$

$$
\left[\begin{array}{llll}
1 & 0 & \vdots & r \\
\wedge & v & \therefore & 0 \\
1 & 1 & \wedge & v
\end{array}\right]=\simeq \therefore
$$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & r & 1 \\
r & r & 1 \\
\vdots & r & 1
\end{array}\right] \quad ; \quad \neq r=\left|\begin{array}{ccc|c}
1 & r & 1 \\
r & r & 1 \\
i & r & 1
\end{array}\right|(s)}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1- & 1- & 1 \\
- & r & i- \\
1 & r & r
\end{array}\right]=\underline{p}=\underline{H}} \\
& {\left[\begin{array}{ccc}
r & \imath- & 1 \\
r- & r & 1- \\
1 & \cdot & 1-
\end{array}\right]=\overline{\underline{I}}=\mathbf{~ ا ل م ص ن , ~}} \\
& {\left[\begin{array}{ccc}
1 & r- & r \\
\frac{1}{r} & 1 & \frac{1-}{r} \\
\frac{1}{r} & \cdot & \frac{1}{r}
\end{array}\right]=\left[\begin{array}{ccc}
r & 1- & 1 \\
r- & r & 1- \\
1 & \cdot & 1-
\end{array}\right] \frac{1}{r}=\left[\begin{array}{ccc}
r & 1- & 1 \\
r- & r & 1- \\
1 & \cdot & 1-
\end{array}\right] \frac{1}{\Delta}=\frac{1}{-}: \therefore}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left[\begin{array}{cc}
1 & 1 \\
\cdots & -1
\end{array}\right]=\left[\begin{array}{cc}
r & \vdots \\
\cdot & 1-
\end{array}\right] \div-\begin{array}{c}
- \\
-
\end{array}\right) \cdot\left[\begin{array}{cc}
r & \vdots \\
\cdot & 1-
\end{array}\right] \\
& {\left[\begin{array}{cc}
\frac{1}{4} & \div \\
\frac{1}{3} & \frac{1}{\vdots}
\end{array}\right]-\left[\begin{array}{ll}
1 & 4 \\
0 & \frac{1}{4}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{7} & \frac{1}{1} \\
\frac{1}{1} & \frac{1}{1}
\end{array}\right]=\underset{\sim}{2}(\rightarrow)}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1- & \frac{1}{1} \\
\frac{1}{4} & .
\end{array}\right]=\left[\begin{array}{cc}
-1 & - \\
1 & \cdot
\end{array}\right] \frac{1}{-1}=\left[\begin{array}{cc}
-1 & - \\
1 & \cdot
\end{array}\right] \frac{1}{\Delta}=\frac{2}{-2} \therefore} \\
& \text { F }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
r- & r \\
\vdots & q-
\end{array}\right]=\left[\begin{array}{ll}
r & \vdots \\
r & 1
\end{array}\right] \quad \therefore}
\end{aligned}
$$

نانيخالاختار
仿
相
 اختبار الوحدر
[1]
.
()

() $.,=\left.\right|_{r-1} ^{r}:-1(2$

$$
\left.\left[\begin{array}{cc}
1- & 1 \\
1 & 1
\end{array}\right]=\underline{-}\left[\begin{array}{cc}
1 & r \\
2 & 1
\end{array}\right]-1=i|s| j\right)(r
$$

$$
12+\geq r, \geq 1, \geq 1:+m
$$

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right](-1),\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right](1)
$$

أهداف الوحدة

 1 - برجذ دعادلة الدائرة المارة بئلاث نقاط.
. ا- برجد نتطني تقاطع مستنـمـ معلرم مع دائرة معلومi.

11-1 بوجد معادلذ المـاس لدائرة بعلومية معادلة الدائرة ونتطة التهماس.

 عا- يرجذ طول ماس لدائرة ميبنة من نتطة خارجة عنيا.

الــرابي

 .'+

$$
\begin{aligned}
& \underset{\rightarrow}{\leftrightarrows} \cdot \stackrel{\leftrightarrows}{\leftrightarrows} \text { 范 }
\end{aligned}
$$

Y Yاناط بج

 هــرى تنحركا على تطر الدائرة الكبرى ، .

المـنـدهـة

 فالهـا الجبري .

لمـــة تاريـخـبة

 الدائرة ,تطرهاها).

$$
\frac{\pi r}{V}, \pi \cdot \frac{i T A T r}{T-G}
$$

خـساب مساحة الدانئرن

لنباس مساحة نـطاع دانري وعلانة لـسـاب ححرم المنشبر النانم والاسطرانة والهرم .

الضـروربة في حباة الناس
رجاء البـبروني (

$$
{ }^{\prime}=^{\prime}(ب-)^{\prime}(1-\infty)
$$

(مـحناها) عبارة عن نتطنة ربـسـى دائرة النقطن.

باكمال المربع نحعل على :

- -

 آحبانا دايثرة تخيلية
الأرضاع النسبـبة لمستقـــم ودائرة.

من المعلوم أن دناك أربع حالات تبّنّ العلاةت بين دائرتين ومي:
 ($($ ($($ ($)$

(1)..

(r)

i -

كانثابي :

14:

نكهل

 , $\rightarrow=\frac{1-\infty}{4-\infty}$ ني الشْكل (

 ننطني النماس ل, (س،ص,) ، لـ (س, بح,) الشادلكان ، ! نتحنـان بإحدائي النقطة ك. لانيا وانعن عليهـا، أي أن :
 ! بوالنالي نإن المعادلة:

 'أرجد سعادلة ماس الدائرة : (
مساذلة المستغبم المار بنغُنتي التماس هي:
;نتطلتا الثماس لـ(س, ،ص,) ، لـ, (س ، ص,) بع الدائرة نحصل علبها كالتالي :
S.

,
,

 ويمكي كتابتُبا بصبنة أخرى كالتالي: (

(v-v)雄尼 . $1=\ldots:=$ = ع :

$$
r i=*(i-\Omega)+*(1--): \text { incon }
$$

.

هعادلة الدنائرة أثانية:

YTI =

$$
\frac{r 0}{\lambda}=\left(\frac{r}{!}-\rho\right)+\left(\frac{1}{!}--\right)(-\quad, \quad+i(1-\rho)+i(:-\infty)
$$

\therefore

$$
1=\frac{1 \pi}{T}-\frac{|1 \gamma-1 \times,+x|}{\pi+1 t}-v \quad \therefore
$$

بالطريقة نفسها سنجد أن:
 A مجسرعة النقاط هي الجمرعة الحالبة .

$$
\frac{11}{1 \cdot V}=\frac{|1-\times \times+\times 1|}{1+1 V}-N, 1
$$

. \therefore
 وتي تمثّل دائرة مركزها ($\frac{V}{r}$ r

$$
\begin{aligned}
& 0-i(+-\infty)+i+\cdots)(\text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{a r}{!}-(r+ص)+i\left(\frac{r}{T}-\sim\right) \text { : ita dular } \therefore
\end{aligned}
$$

$$
\begin{aligned}
& r r_{-=-}^{+}+1 \cdot-1! \\
& 11 r=-\quad \frac{r_{0}}{r}=ب \text { بح }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi r r}{T}=\sim\left(\frac{r_{0}}{T}, \frac{i V}{T}\right) \text {) } 5
\end{aligned}
$$

$$
\begin{aligned}
& \text { الئطنان (}
\end{aligned}
$$

> [18] [18] سادلة الدائرة التي تير بنثطبة الأصل هي:
> rén

 아

A - , a - - 1 [1.]
[11]
؛ ${ }^{\prime}(1+r-)+{ }^{\prime}(r-r)={ }^{\prime}$: \therefore

كالثالي :

- (r) \ldots, $\mathrm{r}_{-}=-{ }^{+}+r_{-}$1 1 -

بح Z =

معادلة المباس لدانرة

(1)

 - برجد معادلة ماس لدائرة بمعلرمبن ميله ومعادلة الدائرة.

 - يوجد معادلة المـاس ، لدائرة بعلومبين مسالتها ، الوازي لمستنتبم بلرم .
 - بوجد معادلة المباس لدائرة معادلثها معلومة من ننطة خار جف عنيا.

تنغيذ حصص البند
يننذ هذا البند ني نمان حصص على النحو التالي:
 الماس لدائرة بعلرمبية معادلتها ونتطة النهاس.

الحعسة الثالثة: امثلة
المصنان الرابعة والثامسة : معادلة المـاس كملرمبة دالرة معادلتها معلرمة ومن ذلك يستنتج معادلة المـاس

والعاشر من أهداف هذا البند.
 الآتية وحل المعادلات من الدرجة الثانبة وصـر معادلة المستنبم.

الحصة السـابعة: أمثلة
المعة الالمنة: تارين صفبة .
وبعد المركز الدائرة عن محرر السبنات بساوي حفرأ ،
هذا ينسر انْ مركز الدايثرة بيع على المسـنـبـم ع = .

$$
\begin{aligned}
& \text { 落 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { i) ; }
\end{aligned}
$$

 $\frac{\vdots}{0}-=$,

 ب بعد المركز عن المستنبم ص= \therefore

 . $\frac{\pi V_{c}}{T}$ ($\frac{T V \varepsilon-}{T}$) :
 $r \cdot \pm$ ن
 "
 [4] مبل المستْيم : ميل المـاسات للدائرة:
 يساوي -

 .
(r () مبله

. $=r+$
|, إريادات رإبابات : غेارين (r)

بالتعبربض عن س,

[[[] بطربتة حل الــزال [ا] نفسبا، نوجد معادلة المساس وهي:

- =r-صr-ひr ; $\frac{r}{4}=ص \frac{1}{r}-\boldsymbol{r} \frac{1}{r}$
$\frac{1}{Y}=\sim$ ،

שی

, = \rightarrow r $\quad=$ ب r = $=1$
في معادلة المسار نحصل على :
$=++(\cdot+$ + $)=-(\cdot+\approx) r+\cdot$
-

 .

 الا

لــنـنارينـبة

$$
\text { [9] المطلوب رسم مستقيم } \mathbf{J}_{\text {يقطع مستفيمين }}
$$

角 بك .

إرشادات وإجابات : تُارين (1-1)

.
$\subset \supset \overleftrightarrow{J}_{(\rightarrow}$
J, J [1]
$1 \subset$ (i) [r]
$\checkmark(\rightarrow$
$v(\rightarrow$
\boldsymbol{v} (j

ب) منوازبان أر مـخالفان
ر) > ، بئلات نقاط ليست على إمتقامة واحذة

الـسترى إب

! \because
.

$$
\begin{aligned}
& {[(r-\lambda) \text { (} r \text {] }}
\end{aligned}
$$

（1－1）

（1－t）
居

；
هـا
 كئكـن ا ب ج على النُوالي أي أن ص ，，$\lambda v=(s) \rightarrow \lambda) v$

$$
\text { ولبكن | } 1 \text { s |=1 } 1 \text { ععلب مبكرن لدينا }
$$

خ \rightarrow جتا هـ جنار＝＝｜با الزاربن جـ وبذللك فإن جا هـ $=$ و $=$ و ，وحث إن

رحبث إِن جثا（ه＋

جتا

جبب مجموعز زاويتين ：
 \mid｜ \mid｜ \mid＝
｜با جا

居 ニ

 －这

تر جـيـبات قر انتقية عامة
 أهـ ．

 لإزا，

$$
\bar{Y} \text { با }
$$

 عامـنـن في بيلنّات البناتي
\qquad

حل المعادلات الملثبة :

(كلم - جبار - ظالم -جاته داهي)

1 \qquad
(

لنا ينعحع اللدرس الطلبة بحنظ العلافات عن طريت الثدربب ني حل كنير من التمارين.
)) نبدأ بالطرن الأول أر الطرن الثاني، وذلك بتطبين التوانين التي تعلمناها حتى يعبع هذا الطرف مساريأ للطرف الآخر

り \div (

المـتـدهـة

隹

$$
\begin{aligned}
& (\sim+\sim)+\ldots+(, v+, v)+(N+, v)(v \\
& \left(\varepsilon^{x} \mathfrak{v}^{-}\right)+\ldots+\left(\varepsilon^{x}, v^{\prime}\right)+\left(\varepsilon^{x} \sim\right)(: \\
& \text { 迹 } \\
& \frac{(1+\dot{j}) \dot{u}}{r}=\Omega \underset{r-j}{\sim}=\dot{\sim}+\ldots+r+r+1(\text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { w }{\underset{\sim}{\sim}}_{\sim}^{\sim}=v^{+}+\ldots+w^{+}+w^{+} w(!
\end{aligned}
$$

$$
\begin{aligned}
& (\varepsilon+\sim){\underset{\sim}{~}}_{1=0}^{0}=(\varepsilon+\sim)+\ldots+\left(\varepsilon^{+}+\sim\right)+(\varepsilon+, \sim)(1 \\
& \text { خواص الرمز " مبـ ، : }
\end{aligned}
$$

$$
\begin{aligned}
& \text { زاعدة) }
\end{aligned}
$$

مقايِس النزعة المر كزية والتـــت ت

. نـنا

$$
\int \times \frac{, \int-\frac{j}{r}}{y}+1=\text {, }
$$

، $=1$

$$
J \times \frac{r^{2}-\frac{j}{r}}{, ป}-ب=,
$$

 لـاعل السـابت للفئة التي يفع فيها الوسبط ، لـ = النكرار المتجمع للفتة التي بتع فبها الوسـط ، ل = طول
 ريكن إيجاد المنوال من التوزيعات الثكرارية باتباع الآني : () نحدد الفئة المنوالبة وهي الفئة التي يقابلها أكبر تكرار في حالة الفئات المتسـارية أ أكبر تكرار معدل في حالة الفئات غير المتساوية

 بطريفة الرسم من المدرج التكراري . وبكتفى للطالب في إيجاد قبمة المنوال بطرينة العزوم (الرانعن) وهي:

$$
J x \frac{!}{2-1}+1=\hat{\imath}
$$

لننة المنوال ، ل = طرل الفئة المنوالبة .

وني منايسس التشتت يكتنى بما فد ورد في كتاب الطالب (الأنحراف المنوسط والثنـاين - الانتحراف المعباري) .

 الـسـابي في هنه الخالة من المالتة الثنالبة :

 الومـبط بكون هر : :

 ن' ,

$$
\begin{aligned}
& \text { ज }
\end{aligned}
$$

(1) \cdots

الارتباط ,أنـكال الانتـشـار

ي :

 بابنارة موجبة أم إشارة سالبة أي ان : - ا 1 ان

$$
\begin{aligned}
& \text { وبشا } \\
& \text { 侯 }
\end{aligned}
$$

 .

 الحلل :

- $\simeq-17=0 \therefore$

الحـل :

.

ب =疗

 وهذه الطلر بفة تسـتند إلى معيار المربعات الصغرى وهذا المعبار بند على أن خط الإنحـلار بجب أن يرسم بحبث

-

 رح

(ب, ص
 ستكرن كـا يلي :
(1).
"
 (ا ' () •

المادنتين ا أر ب على الذكثر .
 ان ا ان ان الِّ
 ()
 دروس احتمالات العام الثادم

توجيهات طرائقية عامة

 واستخخدام المعلم لطرينة واحـدة يبعث اللل والسأم في نفوس الطلبة، ولذلك لا بدّ للمعلم من التنويع في

 لـلادي
 .4 14~1

() ()

 - المحـلبات على الموادت المشـوانبَ :
() إذاكات ا 1 ا

U U 1 .
ا '; ، ب على ال>مل
(ا) . لا
| () • وعنم وتوعالخادنة) ب

 لذلك يجب أن نكـون عـلانة المعلم مع ملابه عـلانت حب ورنـاء لا عـلاتـة رنامـة , تسـأط راســبـبـداد

 بصدر رحب دون النفعال.
 بعد كل درس وكل الدروس ذات السلاتة للتاكد من امتيعاب الطلبة كل معارف الرحـدة .
 إلا إذا مارسها
IY

 المدرس:
ا- متابعن حضور العلبة بوميأ في كل درس وخاصة العلبة الذكور بعد الراحة لأن حضور الطالب أمر مهـم في استثعاب معارف الدرس. 1- استنـار جميع الـواس في توصبل المادة العلمبة إلى اذهان الطللبة بشكل سلبم وصحبح.

（صx，	\％	\cdots	2	バ
：••	1.	1.	17.	\＆．
vo．	reo	10	ro．e	0.
49.	rrs	14	r．ro	\therefore
ir．．	\＆．	r	stro	70
lave	iro	ro	－rto	vo
rir．	vis	iv	s．．．	9.
ra．．	A！	ra	1．．．．	$1 .$.
rr．．	Q．．	r.	ITI．．	11.
174：0	：1：	iv：	srive	ses

$$
\cdot, q v=\frac{4 \mathrm{vv} .}{1.00 \mathrm{~N}}=\frac{9 \mathrm{vv} .}{1.117 \mathrm{rr} . \mathrm{V}}=
$$

ب ）نكارْن الجندرل الثالي ：

رتبة	تكهـ صمرتبا	رتّه	قـ،	1	
1	1.	1	\＆．	1	
T	10	r	0.	「	
r	11	r	00	r	
¢	r r	¢	10	\leq	
－	ro	－	ve	。	
7	rv	1	9.	1	
v	r r	γ	$1 .$.	v	
\wedge	r ．	\wedge	11.	\wedge	

${ }^{1}$	${ }^{5}$	$\int_{\sim} \times 2$	1\＆v－ص\％	－1－5－z	$ص$	\checkmark
－	．	－	－	．	$1: 9$	07
－18	197	$r \cdot \mathrm{~s}$	Tr－	18－	1ro	\＆r
179	＋07	r．1	ir	17	17.	vr
1！ 1	\＆\cdot	0 A ．	ra－	r．－	111	r7
\＆	\＆ 9	I：	r	v	$1: 9$	Ir
r7	11	ivi	$19-$	9－	174	\＆
9	1	r	r	$1-$	10.	0
\％	59	11	$r-$	v －	150	± 9
1．r：	rri	－97	$\mathrm{rr}^{\text {r－}}$	11－	110	rA
：9	197	91.	v －	1：－	12.	tr
ro	$1: 1$	7.	－	ir	104	71
78	17	rr	\wedge	\＆	100	7.
T．T¢	ivir	r．7\％	A．－	： 4		

$1-\frac{.}{(1-1 t)^{\wedge \lambda}}-1-\frac{. x+1}{(1-i t)^{\lambda}}-1-(n) \therefore$

${ }_{j}^{j} \times j$	$\frac{2}{c}=6$	$\frac{c}{k}=j$	（ص－ص）	（ص－）（ص）	＇（＇゙ーツ）	ふ－～－5	ص	\sim
r，rer	1，01－	1，2人－$\frac{1}{1,+7}$	17	：－	\because	8－	1	1
1，14	1，15－	－，9，	\bullet	r－	17	：－	＊	r．
，¢＾	－，TA－	．，r：－	1	1－	4	r－	\＆	\＆
$\cdot, 1$	－，「＾－	－，ro－	1	1－	1	1－	\％	7
．	．	－，ro＋	－	．	1	，	－	\wedge
，，ry	\cdot, vo＋		\＆	＊	：	＇	\checkmark	4
1，14	1，17＋	．， $0.9+$	9	r	17	\pm	\wedge	11
४， 7	1，01＋	1，Vr＋	17	！	4	γ	4	12
V， $\mathrm{A}^{\boldsymbol{r}}$			07		1r1		2.	27

$$
\begin{aligned}
& 1, r:-\frac{1 . r-}{r \ldots}=\frac{r 17-1801}{1 r 97-1097}=\frac{7 \times r 7-r 9 r \times 7}{1(r 7)-r 77 \times 7}=1 \therefore \\
& \because \times\left(1, r:-1 \cdot=ب \therefore \quad{ }^{\prime}-1-2=-\because\right. \\
& 1 \wedge, \cdot £+-1, r!-=\rho \therefore \cdot 1 \wedge, \cdot!=\wedge, \cdot!+1 \cdot=ب \Leftarrow
\end{aligned}
$$

$\cdot, \pi=\frac{10 .}{r!0}=$

$$
\begin{aligned}
& r, \leqslant r 0=\{, v v o-v=
\end{aligned}
$$

$$
\begin{aligned}
& r,\langle r o+\Omega \cdot r 1=\Omega
\end{aligned}
$$

$$
\begin{aligned}
& r,!\cdot \Lambda+ル \cdot, \cdot r r r=\Omega
\end{aligned}
$$

文安

它
：

r．．	190	19.	110	11．	17.	ivt	1 v ．	
19.	19.	110	1 A ．	1vo	170	1 V ．	IVT	صنرل）

！إرشادات وإجابات ：تمارين（r－1•）

\sim ص」	\％	\checkmark	\checkmark	
「7	：	11	＊	
¢ 1	17	1	：	
3.	\％	1.	2	
¢ 1	7	\wedge	7	
97	15	\checkmark	\wedge	
20	171	，	\cdots	
Y4T	17%	\％．	7	2，n＊

$$
\begin{aligned}
& 1,10=\frac{7 \mathrm{MMA}}{24 \mathrm{A9}}=\frac{\text { ioroir - 77.50. }}{8 \mathrm{~V} \cdot \mathrm{V71-7VYO}}=1 \therefore
\end{aligned}
$$

$$
\begin{aligned}
& 1!, r \wedge 0-=\psi \Leftarrow 9!, 1 \mathrm{~A} 0-\mathrm{V}, 1,1=ب \Leftarrow \\
& 12, r 10+49 \times 1,10=2 \therefore+\quad+-1=? \\
& \text { (حرج) } \\
& \mathrm{v}, \mathrm{Vro}=6 \quad 1 \leq, \mathrm{rs} 0+27, \mathrm{r}_{0}= \\
& \text { رهي درجة الطالب في الهندسن }
\end{aligned}
$$

ص）	S	\sim	5
0701	$\bigcirc \leqslant Y$ \％	vv	V ¢
V¢v\％	Vati	\wedge	人 4
¢ 14	018！	\％	Y\％
	9．ro	Q $1 /$	So
ats．	78．．	v	\wedge ．
valv	ArAl	Av	41
：7A．	－1A！	70	vt
v44A	Vrat	97	人7
715	7．＾¢	\wedge ．	vA
710.	TVrs	vo	At
71．50	TV7vo	vai	119

ص＊	5	$ص$	5	5
7.	17	\leq	tro	10
人	r7	7	197	$1!$
\＆．	17	\＆	1．．	1.
vr	7：	\wedge	11	4
97	¢9	v	I	\wedge
15	75	\wedge	15	\wedge
V ．	1.	1.	：9	v
0%	11	9	r	1
27	187	$1:$	17	！
T：	1： 5	It	！	＂
2人．	V77	Ar	Aro	${ }^{\text {s }}$

：

$\frac{1!\times 1 .-1!1 \times 0}{17 \cdots-19 \times 0}=$
,,$r 1=\frac{1 \mathrm{~V} .}{000}=\frac{07 \cdot-\mathrm{Vr}}{17 \cdots-100}=$
エーテ＝ب \because

－x－	5	\sim	\sim
vo	＋40	。	10
： 1	1：	：	${ }^{1 \%}$
IT	r\％	＊	7
\wedge	17	＇	：
T	9	1	T
1：7	：\quad ．	1：	：

$\cdot, r+\cdots, r 1=_\therefore$
$\mathrm{v}=\ldots$

－ 2	－بٌ	（i）	以－\％	\cdots
1，${ }^{\text {e }}$	：	，	「	${ }^{1}$
1， 2	：	－	：	＇
＇	\％	「	＊	r
：	\checkmark	：	v	：
s，	\wedge	$0,0 \quad$＇	A	－
e，	\wedge	0,0	A	7
v	$\stackrel{1}{ }$	v	＋	v
A	1.	\wedge	1.	\wedge
9	${ }^{1 /}$	－	12	4
1.	$1:$	1.	10	1.

$$
\cdot, 78-=\frac{1 \cdots 7}{1: 51}=1 \therefore
$$

$$
\begin{aligned}
& \text { - }
\end{aligned}
$$

（T）（T）نغرض ت

ظهبر الصبرز مرتين أو مرة واحدة أز عدم ظنهورها

（ごへじい・•

，

｜（．．．．．．．．．．－ $1=$（o）

(2)
| $1, \mathrm{v}, \mathrm{o}, 1 \mid$ - $1 \therefore$

$|r,+|=\therefore$

E.

.

(

" 1 . . , it 1 A ا ()

. 10 O (i)

（ب）\cap^{\prime} ）$-(ب) b+(1) b=\left(ب \cup^{\prime}\right) b \because$

$$
\cdot, r=\cdot, r-\cdot, \imath=
$$

$$
(ب) b-(ب) b+(1) b=(ب \cup 1) b \because(1) \quad[r]
$$

$$
\text { (1)b-(ب)b+ (1) }-=(\varepsilon) b \therefore
$$

$$
(ب) b-\frac{r}{1}+\frac{r}{0}=1 \quad \therefore
$$

$$
\frac{1}{1}=(ب) L \Leftarrow
$$

$$
(ب-1) b=(ب) b(r)
$$

$$
\text { (1) } b-(1) b=
$$

$$
\frac{r}{1}=\frac{1}{1}-\frac{r}{0}=
$$

$$
\cdot, 1=,, t-1=(1) b-1=\frac{\prime}{(1) b(1)}[!]
$$

$$
\cdot, r=\cdot, r-\cdot,!=(ب) b-(1) b=(ب-1) b(r)
$$

$$
\cdot, 0=, r-\cdot, r+\cdot, \imath=(ب) b-(ب) b+(1) b=\left(ب \cup^{\prime}\right) b \because(r)
$$

$$
\left(ب \cup^{\prime}\right) b-1=\left(ب \cup^{\prime}\right) b \therefore
$$

$$
\cdot, 0-1=
$$

$$
\cdot, 0=
$$

$$
\frac{1 r}{s}=(ب) b \Leftarrow(ب) b-\frac{1}{o}+\frac{1}{\varepsilon}=\frac{1}{\lambda}
$$

. أ ب ب حادثتان غبر متنافينين (لان حا (ا ب)
[1] نفرن i ن :

$$
1=(\rightarrow) b+(ب) b+(1) b
$$

$$
\frac{r}{11}=s \Leftarrow 1=v \frac{11}{r} \Leftarrow 1=s \frac{r}{r}+w+w r \therefore
$$

$$
\begin{aligned}
& \text { (1)に-1 = (T) し (() しr } \\
& , 1=-,!-1= \\
& \text { (ب) に-1 = (く) い (} r \text {) } \\
& \cdot, v=,, r-1= \\
& \text { : slay }\rangle(ب \cap \text { ! }) \text { b (r) }
\end{aligned}
$$

$$
|(\because, \Omega) \cdot(\Omega \cdot \Omega) \cdot(r, \rho)|=1(r)
$$

$$
\left|\left(0, \int\right) \cdot\left(r, \int\right) \cdot\left(1, \int\right)\right|=ب
$$

$\left|\left(0, \int\right) \cdot\left(\Gamma, \int\right) \cdot\left(\Gamma, \int\right) \cdot\left(0, \int\right) \cdot(\Gamma, \rho) \cdot(\Gamma, \rho)\right|=-$

بینــا

1－1
（1）

（ $1-ب) \cup(ب-1)$（ 1 （ （v）

إرشـادات وإجابات ：تمارين（ 1 1－؛ ثانيا وثالثا）

（心） （ ）

4

الأختبار

ب）احسـب معامل الارتباط الحفبي بين س ، ص
ها（احسب معامل ارنباط الراتب بين س ، صر
［［
$1 .=$ ，

－المادثة الئزكّدة－

$$
: \text { : إرج } \quad \frac{1}{£}=(ب \cap 1) b, \frac{r}{\lambda}=(ب) b, \frac{1}{r}=(1) b
$$

نا

－（1） $1.10 .+\cdot+1-1$.
－＊）

 $\div-\frac{1}{1}-(1)$ に（1）$:$
， $\div-(\omega) に(\Gamma):$ ：

نرٍ

$\div-\frac{\because}{\circ}-\frac{(1) \pi}{(2)}-(1)-\therefore$
، 11.1 $\div-\frac{1}{7}-$（1）

$\therefore-\frac{\because}{1}-(-) に$.

$\bar{F} \bar{F}^{-}(-1) \cup=(\rightarrow) \measuredangle \therefore$

$$
\begin{aligned}
& \text { المراجع } \\
& \text { 1- فريد أبو زنية، لطلفي لطيغة، خليل الخليلي [الطرق الإحصصائية في التربية والعلوم الانسانية . الجزء الأول }
\end{aligned}
$$

$$
\begin{aligned}
& \text {. شعبتي العلوم والرياضيات (مصر العربية) ـ ـ } \\
& \text { r r r . ح حبيب علي اسماعيل (المدخل للإِحصاء) . } \\
& \text { ؟- نظريات ومسائل في الاحتمالات ، نظريات ومسائل في الإحعصاء[[سلسلة ملخصات سيشوم] . } \\
& \text { 0- أ . ثابت عزيز الشاروني ، [مبادئ علم الإحصاء، (محر العربية)] . } \\
& \text { Y- د. مدني دسوقي (مبادئ في علم الإحصاء) . }
\end{aligned}
$$

人- كتب المنظمة العربية للتربية والثقافة والعلوم.

aلl lavà

Scanned by CamScanner

